首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   2篇
化学   15篇
力学   4篇
数学   14篇
物理学   2篇
  2023年   1篇
  2020年   4篇
  2019年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   5篇
  2012年   4篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2007年   3篇
  2005年   2篇
排序方式: 共有35条查询结果,搜索用时 31 毫秒
1.
Additive manufacturing has established itself as a popular and powerful tool in electrochemistry research and development. In this short review, we focus on the latest results in both 3D printing and electrochemistry communities that could potentially benefit manufacturing in the electrochemical industry. We provide insights from recent and relevant research works and conclude that the likely scenario in the industry is the deployment of a combination of subtractive and additive technologies in order to manufacture high quality and cost-effective electrochemical reactors within reasonable timeframes.  相似文献   
2.
An improved progressive preconditioning method for analyzing steady inviscid and laminar flows around fully wetted and sheet‐cavitating hydrofoils is presented. The preconditioning matrix is adapted automatically from the pressure and/or velocity flow‐field by a power‐law relation. The cavitating calculations are based on a single fluid approach. In this approach, the liquid/vapour mixture is treated as a homogeneous fluid whose density is controlled by a barotropic state law. This physical model is integrated with a numerical resolution derived from the cell‐centered Jameson's finite volume algorithm. The stabilization is achieved via the second‐and fourth‐order artificial dissipation scheme. Explicit four‐step Runge–Kutta time integration is applied to achieve the steady‐state condition. Results presented in the paper focus on the pressure distribution on hydrofoils wall, velocity profiles, lift and drag forces, length of sheet cavitation, and effect of the power‐law preconditioning method on convergence speed. The results show satisfactory agreement with numerical and experimental works of others. The scheme has a progressive effect on the convergence speed. The results indicate that using the power‐law preconditioner improves the convergence rate, significantly. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
3.
This paper suggests an iterative parametric approach for solving multiobjective linear fractional programming (MOLFP) problems which only uses linear programming to obtain efficient solutions and always converges to an efficient solution. A numerical example shows that this approach performs better than some existing algorithms. Randomly generated MOLFP problems are also solved to demonstrate the performance of new introduced algorithm.  相似文献   
4.
This paper discusses a class of continuous linear programs with fuzzy valued objective functions. A member of this class is called a fuzzy separated continuous linear program (FSCLP). Such problems have applications in a number of domains, including, production and inventory systems, communication networks, and pipeline systems for transportation. The discretization approach is used to construct two ordinary fuzzy linear programming problems, which give a lower and an upper bound on the optimal value of FSCLP. It is then shown how to construct an improved feasible solution for FSCLP starting from a nonoptimal one. This leads to the development of a class of algorithms based on a sequence of discrete approximations to FSCLP. Numerical examples in the context of continuous-time networks are presented to show the applicability of the proposed method.  相似文献   
5.
Ethylene propylene diene monomer grafted with maleic ahydride (MAH-g-EPDM) was prepared by peroxide-initiated melt grafting of MAH onto EPDM using a HAAKE internal mixer at 180 °C and 60 rpm for 5 min. The effect of MAH-g-EPDM compatibilizer on the interactions, and tensile and morphological properties of halloysite nanotubes (HNTs) filled EPDM nanocomposites was investigated. The tensile properties of the nanocomposites were influenced by two major factors. The hydrogen bonding between MAH-g-EPDM and HNTs, which was confirmed by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), as well as the formation of EPDM-rich and HNT-rich areas, are the dominant effects on the tensile strength of the nanocomposites at low and high HNT loading, respectively. It was found that the cure time (t90), maximum torque (MH) and minimum torque (ML) of the compatibilized nanocomposites were increased after adding MAH-g-EPDM. The reinforcement mechanism of the compatibilized and un-compatibilized EPDM/HNT nanocomposites was also investigated based on morphological observations of the nanocomposites.  相似文献   
6.
Synchrotron radiation (SR), as a result of its high-intensity, brilliant, monochromatic, and collimated beams, is becoming one of the most crucial components of research in various fields of materials science such as nanomaterials, biomaterials, and energy materials. SR-based characterization methods can be employed to analyze different systems such as powders, thin films, and bulk forms having complex crystalline or amorphous structures. In this review, peculiarities of SR are briefly explained. Moreover, various techniques carried out utilizing this instrument for material characterization such as X-ray powder diffraction, grazing-incidence X-ray diffraction, small/wide-angle X-ray scattering, X-ray absorption spectroscopy, different techniques of X-ray imaging, X-ray photoelectron spectroscopy, and X-ray microprobes/nanoprobes are presented. As a result, by shedding light on the advantages of SR and its superiority to the equivalent laboratory experiments, researchers are recommended to exploit the capabilities of this invaluable tool in their materials characterization.  相似文献   
7.
Light emission from luminol is probably one of the most popular chemiluminescence reactions due to its use in forensic science, and has recently displayed promising applications for the treatment of cancer in deep tissues. The mechanism is, however, very complex and distinct possibilities have been proposed. By efficiently combining DFT and CASPT2 methodologies, the chemiluminescence mechanism has been studied in three steps: 1) luminol oxygenation to generate the chemiluminophore, 2) a chemiexcitation step, and 3) generation of the light emitter. The findings demonstrate that the luminol double-deprotonated dianion activates molecular oxygen, diazaquinone is not formed, and the chemiluminophore is formed through the concerted addition of oxygen and concerted elimination of nitrogen. The peroxide bond, in comparison to other isoelectronic chemical functionalities (−NH−NH−, −N−N−, and −S−S−), is found to have the best chemiexcitation efficiency, which allows the oxygenation requirement to be rationalized and establishes general design principles for the chemiluminescence efficiency. Electron transfer from the aniline ring to the OO bond promotes the excitation process to create an excited state that is not the chemiluminescent species. To produce the light emitter, proton transfer between the amino and carbonyl groups must occur; this requires highly localized vibrational energy during chemiexcitation.  相似文献   
8.
Non-additive measure is a generalization of additive probability measure. Integral inequalities play important roles in classical probability and measure theory. Some well-known inequalities such as the Minkowski inequality and the H?lder inequality play important roles not only in the theoretical area but also in application. Non-additive integrals are useful tools in several theoretical and applied statistics which have been built on non-additive measure. For instance, in decision theory and applied statistics, the use of the non-additive integrals can be envisaged from two points of view: decision under uncertainty and multi-criteria decision-making. In fact, the non-additive integrals provide useful tools in many problems in engineering and social choice where the aggregation of data is required. In this paper, H?lder and Minkowski type inequalities for semi(co)normed non-additive integrals are discussed. The main results of this paper generalize some previous results obtained by the authors.  相似文献   
9.
The present work is concerned with checking a new and simple pair potential function (soft‐core double Yukawa potential) for noble gases by calculation of the transport properties. The viscosity, thermal conductivity and self diffusion coefficient in dilute gas limit in the temperature range of 298‐1400 K are calculated and agreement with the measurements is, in general, within the experimental error. A comparison of the calculated and experimental values of the viscosity, thermal conductivity and the diffusion coefficients yields an average absolute deviation of 0.5%, 1.5% and 1.2%, respectively. Also, the calculated transport properties from this potential have been compared with those calculations via the accurate experimental potential and also the corresponding state.  相似文献   
10.
Fourier-transform infrared (FTIR) spectroscopy has been applied in combination with wide-angle X-ray diffraction and measurements of strength, fluidity, yellowness, birefringence, and moisture regain to detect microstructural changes in lyocell fibres, a regenerated cellulose fibre, subjected to direct heat and annealing treatments. TMA, and SEM were used to show the effect of direct heat and annealing on lyocell fibres. The FTIR spectroscopy results show that a decrease in intermolecular hydrogen bonding occurs at 70 and 80 °C for annealed and directly heated samples, respectively. The results demonstrate increase of the intensity of O–H stretching vibrations, this associated with hydrogen bonds reforming around 130 °C. Lyocell fibres shrink with direct heating in the temperature range 130–160 °C. The crystallinity decreases gradually with increasing temperature. There is no significant change in colour of the samples annealed up to 150 °C. A continuous increase in the fluidity occurs for the annealed samples in the range 150–230 °C. The tenacity and breaking extension of heated samples decrease with increasing temperature. The lower annealing temperatures cause no observable change in the smooth and void-free surface, but in the annealing temperature range 170–230 °C, substantial non-uniformity is apparent on the surface of the fibres.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号