首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   0篇
力学   97篇
数学   4篇
物理学   35篇
  2017年   1篇
  2016年   1篇
  2014年   3篇
  2013年   3篇
  2012年   10篇
  2011年   2篇
  2010年   6篇
  2009年   3篇
  2008年   7篇
  2007年   3篇
  2006年   1篇
  2004年   5篇
  2003年   4篇
  2002年   2篇
  2001年   5篇
  2000年   2篇
  1999年   6篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   6篇
  1991年   6篇
  1990年   7篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1975年   4篇
  1974年   5篇
  1973年   1篇
  1972年   1篇
  1967年   1篇
排序方式: 共有136条查询结果,搜索用时 31 毫秒
1.
Simple wave solutions of non-linear hyperbolic equations are studied by using the method of renormalization, the analytic method of characteristics, and the method of multiple scales. It is shown that the results of the method of renormalization depend on whether the potential function or the velocity is normalized. This arbitrariness does not occur when using either the analytic method of characteristics or the method of multiple scales. However, special consideration must be given in determining the potential from the velocity obtained by the analytic method of characteristics. No such consideration is needed when the method of multiple scales is applied. The first term obtained for the potential by the method of multiple scales contains a cumulative term in addition to a non-cumulative term. This first-order term is shown to yield the equal area rule for shock waves, and the slope of an equipotential line is the arithmetic mean of the slope of the characteristic in the unperturbed medium and the slope of the characteristic at the point under consideration.  相似文献   
2.
An exact treatment of the propagation of axisymmetric waves in coaxial anisotropic assembly of piezoelectric rod systems is presented. The rod system consists of an arbitrary number of coaxial layers, each possessing transversely isotropic symmetry properties. The treatment, which is based on the transfer matrix technique, is capable of deriving the dispersion relations for a variety of situations. These include the case of a single rod system that is either embedded in an infinitely extended solid or fluid host or kept free. The procedure is also adapted to derive approximate solutions for the cases of a periodic fiber distribution in a matrix material, which model unidirectional fiber-reinforced composites. The results are numerically illustrated for a widely used piezoelectric-polymer composite. It is seen that piezoelectric coupling can significantly change the morphology of the dispersive behavior of the composite.  相似文献   
3.
Dynamics of a Cubic Nonlinear Vibration Absorber   总被引:1,自引:0,他引:1  
We study the dynamics of a nonlinear active vibration absorber. We consider a plant model possessing curvature and inertia nonlinearities and introduce a second-order absorber that is coupled with the plant through user-defined cubic nonlinearities. When the plant is excited at primary resonance and the absorber frequency is approximately equal to the plant natural frequency, we show the existence of a saturation phenomenon. As the forcing amplitude is increased beyond a certain threshold, the response amplitude of the directly excited mode (plant) remains constant, while the response amplitude of the indirectly excited mode (absorber) increases. We obtain an approximate solution to the governing equations using the method of multiple scales and show that the system possesses two possible saturation values. Using numerical techniques, we perform stability analyses and demonstrate that the system exhibits complicated dynamics, such as Hopf bifurcations, intermittency, and chaotic responses.  相似文献   
4.
The behavior of single-degree-of-freedom systems possessing quadratic and cubic nonlinearities subject to parametric excitation is investigated. Both fundamental and principal parametric resonances are considered. A global bifurcation diagram in the excitation amplitude and excitation frequency domain is presented showing different possible stable steady-state solutions (attractors). Fractal basin maps for fundamental and principal parametric resonances when three attractors coexist are presented in color. An enlargement of one region of the map for principal parametric resonance reveals a Cantor-like set of fractal boundaries. For some cases, both periodic and chaotic attractors coexist.  相似文献   
5.
A general nonlinear theory for the dynamics of elastic anisotropic plates undergoing moderate-rotation vibrations is presented. The theory fully accounts for geometric nonlinearities (moderate rotations and displacements) by using local stress and strain measures and an exact coordinate transformation, which result in nonlinear curvatures and strain-displacement expressions that contain the von Karman strains as a special case. The theory accounts for transverse shear deformations by using a third-order theory and for extensionality and changes in the configuration due to in-plane and transverse deformations. Five third-order nonlinear partial-differential equations of motion describing the extension-extension-bending-shear-shear vibrations of plates are obtained by an asymptotic analysis, which reveals that laminated plates display linear elastic and nonlinear geometric couplings among all motions.  相似文献   
6.
Nonlinear Normal Modes of a Parametrically Excited Cantilever Beam   总被引:1,自引:0,他引:1  
Yabuno  Hiroshi  Nayfeh  Ali H. 《Nonlinear dynamics》2001,25(1-3):65-77
We investigate theoretically thenonlinear normal modes of a vertical cantilever beam excited by aprincipal parametric resonance. We apply directly the method ofmultiple scales to the governing nonlinear nonautonomousintegral-partial-differential equation and associated boundary conditions.In the absence of damping, it is shown that the system has nonlinear normal modes, as defined by Rosenberg, even in the presence of the parametric excitation.We calculate the spatial correction to the linear mode shapedue to the effects of the inertia and curvature nonlinearities andthe parametric excitation. We compare the result obtained withthe direct approach with that obtained using a single-mode Galerkindiscretization.The deviation between the two predictions increases as the oscillationamplitude increases.  相似文献   
7.
A simple method is presented to model large rigid-jointed lattice structures as continuous elastic media with couple stresses using energy equivalence. In our analysis the transition from the discrete system to the continuous media is achieved by expanding the displacements and the rotations of the nodal points in a Taylor series about a suitable chosen origin. The strain energy of the continuous media with couple stresses is then specialized to obtain shear deformation plate continua. Equivalent continua for single layered grids, double layered grids and three-dimensional lattices are then obtained.  相似文献   
8.
Pendulation Reduction in Boom Cranes Using Cable Length Manipulation   总被引:1,自引:0,他引:1  
A technique is proposed to reduce payload pendulations using the reelingand unreeling of the hoisting cable. The payload is modeled as a pointmass, the cable is modeled as a rigid link, and the assembly, aspherical pendulum, is attached to the boom tip. An excitation isapplied to the assembly at the boom tip. The motion of the payload isdescribed using two-dimensional and three-dimensional models. Ourresults demonstrate that cable-length manipulation can be used to reducepayload pendulations due to near-resonance excitations. Significantreductions can be obtained via an appropriate choice of thereeling/unreeling speed. We also demonstrate the limitations inherent intwo-dimensional modelings of a crane.  相似文献   
9.
An analytical and experimental investigation into the response of a nonlinear continuous system with widely separated natural frequencies is presented. The system investigated is a thin, slightly curved, isotropic, flexible cantilever beam mounted vertically. In the experiments, for certain vertical harmonic base excitations, we observed that the response consisted of the first, third, and fourth modes. In these cases, the modulation frequency of the amplitudes and phases of the third and fourth modes was equal to the response frequency of the first mode. Subsequently, we developed an analytical model to explain the interactions between the widely separated modes observed in the experiments. We used a three-mode Galerkin projection of the partial-differential equation governing a thin, isotropic, inextensional beam and obtained a sixth-order nonautonomous system of equations by using an unconventional coordinate transformation. In the analytical model, we used experimentally determined damping coefficients. From this nonautonomous system, we obtained a first approximation of the response by using the method of averaging. The analytically predicted responses and bifurcation diagrams show good qualitative agreement with the experimental observations. The current study brings to light a new type of nonlinear motion not reported before in the literature and should be of relevance to many structural and mechanical systems. In this motion, a static response of a low-frequency mode interacts with the dynamic response of two high-frequency modes. This motion loses stability, resulting in oscillations of the low-frequency mode accompanied by a modulation of the amplitudes and phases of the high-frequency modes.  相似文献   
10.
The second-order closure method is used to analyze the nonlinear response of two-degree-of-freedom systems with quadratic nonlinearities. The excitation is assumed to be the sum of a deterministic harmonic component and a random component. The case of primary resonance of the second mode in the presence of a two-to-one internal (autoparametric) resonance is investigated. The method of multiple scales is used to obtain four first-order ordinary-differential equations that describe the modulation of the amplitudes and phases of the two modes. Applying the second-order closure method to the modulation equations, we determine the stationary mean and mean-square responses. For the case of a narrow-band random excitation, the results show that the presence of the nonlinearity causes multi-valued mean-square responses. The multi-valuedness is responsible for a jump phenomenon. Contrary to the results of the linear analysis, the nonlinear analysis reveals that the directly excited second mode takes a small amount of the input energy (saturates) and spills over the rest of the input energy into the first mode, which is indirectly excited through the autoparametric resonance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号