首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   1篇
力学   2篇
  2022年   1篇
  2020年   1篇
  2005年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Conventional monodimensional fluorescence spectroscopy in the emission, excitation, and synchronous-scan modes and total luminescence spectroscopy have proven to be sensitive techniques for characterization and differentiation of humic acid (HA) and fulvic acid (FA) fractions isolated from an aerobically and anaerobically digested and limed biosolid, two layers of a sandy and a clayey Brazilian oxisol, and the corresponding biosolid-amended soils. The spectral patterns and the relative fluorescence intensities suggest greater molecular heterogeneity, less aromatic polycondensation, and less humification of biosolid HA and FA compared with soil HA and FA. However, the differences are smaller for the FA fractions than for the HA fractions. Fluorescence properties of soil HA and FA differ slightly as a function of soil type and soil layer. Biosolid application causes a shift to shorter wavelengths of the main fluorescence peaks and marked variation of the relative fluorescence intensities of HA and FA isolated from amended soils. These results suggest that molecular components of relatively small molecular size, with a low level of aromatic polycondensation, and low degree of humification present in biosolid HA and FA are partially and variously incorporated into amended soil HA and FA. In general, these modifications seem to be smaller in HA and FA from the clayey soil layers than in those from the sandy soil layers, possibly because of protective effects exerted by clay minerals of native soil HA and FA against disturbances caused by biosolid application.  相似文献   
2.

Representative models of the nonlinear behavior of floating platforms are essential for their successful design, especially in the emerging field of wave energy conversion where nonlinear dynamics can have substantially detrimental effects on the converter efficiency. The spar buoy, commonly used for deep-water drilling, oil and natural gas extraction and storage, as well as offshore wind and wave energy generation, is known to be prone to experience parametric resonance. In the vast majority of cases, parametric resonance is studied by means of simplified analytical models, considering only two degrees of freedom (DoFs) of archetypical geometries, while neglecting collateral complexity of ancillary systems. On the contrary, this paper implements a representative 7-DoF nonlinear hydrodynamic model of the full complexity of a realistic spar buoy wave energy converter, which is used to verify the likelihood of parametric instability, quantify the severity of the parametrically excited response and evaluate its consequences on power conversion efficiency. It is found that the numerical model agrees with expected conditions for parametric instability from simplified analytical models. The model is then used as a design tool to determine the best ballast configuration, limiting detrimental effects of parametric resonance while maximizing power conversion efficiency.

  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号