首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学   7篇
力学   1篇
物理学   2篇
  2022年   1篇
  2020年   1篇
  2017年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2006年   2篇
  2005年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
A flow-injection impedimetric immunosensor for the sensitive, direct and label-free detection of cholera toxin is reported. A limit of detection smaller than 10 pM was achieved, a value thousands of times lower than the lethal dose. The developed chips fulfil the requirement of low cost and quick reply of the assay and are expected to enable field screening, prompt diagnosis and medical intervention without the need of specialized personnel and expensive equipment, a perspective of special relevance for use in developing countries. Since the chip layout includes two sensing areas each one with a 2 × 2 sensor array, our biochips can allow statistical or (alternatively) multiplex analysis of biorecognition events between antibodies immobilized on each working electrode and different antigens flowing into the chamber.  相似文献   
2.
Chronic myeloid leukemia (CML) is a myeloproliferative disease that activates multiple signaling pathways, causing cells to produce higher levels of reactive oxygen species (ROS). Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are a major generator of ROS in leukemia, and marine natural products have shown promising activities for the treatment of hematopoietic malignancies. In the present study, we investigated the effect of the marine microalga Skeletonema marinoi (S.M.), a ubiquitous diatom that forms massive blooms in the oceans, on the human leukemia cell line K562. The effects of S.M. extract on cell viability, production of ROS, nitric oxide (NO), and apoptosis were examined. In this preliminary work, S.M. was able to decrease cell viability (p < 0.05) and increase apoptosis levels (p < 0.05) in K562 cells after 48 h of treatment. In addition, the levels of NOX, NO, and malondialdehyde (MDA) were reduced in K562-treated cells (p < 0.05), whereas the levels of SOD, CAT, and GPx increased during treatment (p < 0.05). Finally, analyzing Bax and Bcl-2 expression, we found a significant increase in the proapoptotic protein Bax and a sustained decrease in the antiapoptotic protein Bcl-2 (p < 0.05) in the K562-treated cells.  相似文献   
3.
In the present study, a composite material consisting of polypyrrole nanowires (PPyNWs) and platinum nanoparticles (PtNPs) has been developed by an all-electrochemical approach and proved to be highly effective for electrochemical determination of dopamine (DA). PPyNWs are electropolymerized by a template-free method, and PtNPs are subsequently electrodeposited by cyclic voltammetry. Chemical characterization by X-ray photoelectron spectroscopy showed the effective PtNP immobilization on polymer nanowires discriminating at the same time Pt species deposited and revealing the occurrence of polypyrrole-PtNP interaction. The morphology of the composite material was characterized using scanning electron microscopy that showed spherical Pt nanoparticles well distributed within PPy-NW network. DA detection was performed by differential pulse voltammetry technique obtaining satisfactory performances in terms of linear range (1–77 μM), sensitivity, reproducibility (RSD 2.7%), and detection limit (0.6 μM). The electrocatalytic role of PtNPs in DA electroxidation process is clearly demonstrated by the comparison with PPyNWs only. Moreover, no significant response is observed in the presence of common interference as ascorbic acid and uric acid, which may coexist with DA in biological fluids, demonstrating a good selectivity toward DA. Moreover, DA was detected in human serum samples spiked obtaining a satisfactory recovery of 94%. A synergistic effect involving both PtNPs and PPyNWs is invoked for explaining the observed electrocatalytic activity.  相似文献   
4.
The integration in the accelerator-based facility at CEDAD (Centro di Datazione e Diagnostica), University of Lecce, of a state-of-the art AMS (accelerator mass spectrometry) 14C dating system, and three different beam lines for IBA (ion beam analysis) compositional investigations, has given the possibility of developing an integrated IBA-AMS approach to the study of a wide range of archaeological problems. Here we present three cases where in air IBA methods were involved for the elemental characterisation of objects found in archaeological contexts, chronologically defined on the basis of high resolution AMS14C measurements.In particular we report on the identification of cinnabar (HgS) on Neolithic bones, the compositional analysis of a set of golden artefacts dated at the final Bronze age, and the analysis of red decorations on Neolithic pottery. PACS 32.30.Rj; 34.50.Dy; 82.80.Ms  相似文献   
5.
Here an EIS (electrochemical impedance spectroscopy) biochip to detect cell migration is demonstrated. This biochip has been inspired by a traditional transwell assay/modified Boyden chamber and consists of two compartments separated by a porous membrane. This structure (PDMS-based) is aligned to EIS sensors. Cells are seeded in the upper chamber through microfluidic channels. During migration cells go through the pores of the membrane and get in touch with the electrodes that detect migrated cells. The performance of our cell-chip was tested by investigating the migratory ability of hepatocellular carcinoma (HCC) cells as a function of microenvironment. For this purpose we challenged HCC cells to migrate on different extra-cellular matrix (ECM) components including laminin 1, collagen IV and laminin 5. The results reveal that our cell chip provides reliable results that consistently overlap with those obtained with traditional standardized Boyden chambers. Thus, we demonstrate a new, easy tool to study cell migration and to perform automatic assays. This approach is easier and faster than traditional transwell assays and can be suitable for high-throughput studies in drug discovery applications.  相似文献   
6.
Electrical conduction in solid state disordered multilayers of non-redox proteins is demonstrated by two-terminal transport experiments at the nanoscale and by scanning tunneling microscopy (STM/STS experiments). We also show that the conduction of the biomolecular films can be modulated by means of a gate field. These results may lead to the implementation of protein-based three-terminal nanodevices and open important new perspectives for a wide range of bioelectronic/biosensing applications.  相似文献   
7.
Nonlinear Dynamics - Hysteretic nonlinearities significantly affect the behavior of devices based on piezoelectric materials. The topic has been widely addressed in the actuation framework, as...  相似文献   
8.
Self‐assembled donor/acceptor dyads are of current interest as they are biomimetic to the natural photosynthetic conversion system. Herein, we present an ultrahigh‐vacuum scanning tunneling microscopy and scanning tunneling spectroscopy (UHV‐STM/STS) study of ex situ self‐assembled supramolecular dyads consisting of fulleropyrrolidines (PyC2C60) axially ligated to zinc(II) tetraphenylporphyrin (ZnTPP), self organized on a 4‐aminothiophenol (4‐ATP) self‐assembled monolayer on gold(111). These dyads show both bias‐polarity‐dependent apparent height in STM images and highly rectifying behavior in tunneling spectroscopy. First‐principles density functional theory calculations clarify the conformational and electronic properties of the 4‐ATP/ZnTPP/PyC2C60 system. Interestingly, we find easier tunneling for electrons moving from the acceptor side of the dyads to the donor side, in the inverse‐rectifying sense with respect to previously reported molecular rectifiers. Such behavior cannot be explained as an elastic resonant tunneling process, but it can by using a model based on the Aviram–Ratner mechanism.  相似文献   
9.
In this paper we report on the effects of the insertion of Cr atoms on the electrical and optical properties of indium tin oxide (ITO) films to be used as electrodes in spin-polarized light-emitting devices. ITO films and ITO(80 nm)/Cr-doped ITO(20 nm) bilayers and Cr-doped ITO films with a thickness of 20 nm were grown by pulsed ArF excimer laser deposition. The optical, structural, morphological and electrical properties of ITO films and ITO/Cr-doped structures were characterized by UV–Visible transmission and reflection spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM) and Hall-effect analysis. For the different investigations, the samples were deposited on different substrates like silica and carbon coated Cu grids. ITO films with a thickness of 100 nm, a resistivity as low as ~4×10?4 Ω?cm, an energy gap of ~4.3 eV and an atomic scale roughness were deposited at room temperature without any post-deposition process. The insertion of Cr into the ITO matrix in the upper 20 nm of the ITO matrix induced variations in the physical properties of the structure like an increase of average roughness (~0.4–0.5 nm) and resistivity (up to ~8×10?4 Ω?cm). These variations were correlated to the microstructure of the Cr-doped ITO films with particular attention to the upper 20 nm.  相似文献   
10.
In this Communication, we show that proteins embedded in high external electric fields are capable of retaining a nativelike fold pattern. We have tested the metalloprotein azurin, immobilized onto SiO2 substrates in air with proper electrode configuration, by applying static fields up to 10(6)-10(7) Vm. The effects on the conformational properties of protein molecules have been determined by means of intrinsic fluorescence measurements. Experimental results indicate that no significant field-induced conformational alteration occurs. Such results are also discussed and supported by theoretical predictions of the inner protein fields.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号