首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22159篇
  免费   2764篇
  国内免费   2597篇
化学   15746篇
晶体学   306篇
力学   1107篇
综合类   249篇
数学   2570篇
物理学   7542篇
  2024年   26篇
  2023年   224篇
  2022年   450篇
  2021年   589篇
  2020年   599篇
  2019年   666篇
  2018年   614篇
  2017年   604篇
  2016年   901篇
  2015年   955篇
  2014年   1223篇
  2013年   1639篇
  2012年   1731篇
  2011年   1918篇
  2010年   1481篇
  2009年   1465篇
  2008年   1724篇
  2007年   1552篇
  2006年   1510篇
  2005年   1290篇
  2004年   1055篇
  2003年   885篇
  2002年   997篇
  2001年   715篇
  2000年   573篇
  1999年   413篇
  1998年   276篇
  1997年   190篇
  1996年   192篇
  1995年   149篇
  1994年   118篇
  1993年   111篇
  1992年   94篇
  1991年   72篇
  1990年   75篇
  1989年   80篇
  1988年   53篇
  1987年   44篇
  1986年   22篇
  1985年   45篇
  1984年   21篇
  1983年   23篇
  1982年   21篇
  1981年   21篇
  1980年   21篇
  1979年   9篇
  1978年   19篇
  1977年   14篇
  1976年   7篇
  1975年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Two series of novel alternating copolyoxamides (PAnT-alt-n2 and PAn2-alt-62) are synthesized via solution/solid-state polycondensation (SSP). The alternating structures are analyzed carefully with 1H NMR and 13C NMR spectra. The melting behaviors, thermal stabilities, crystal structures and crystallinities are systematically evaluated by DSC, TGA and WAXD. The results reveal that these alternating copolyoxamides possess almost perfect alternating chain structures and have high melting temperature (Tm > 270 °C), high crystallinity (Xc > 32%) and high decomposition temperature (T5 > 405 °C) as well as low saturated water absorption (<3.5 wt%), which suggests that they have high potential as engineering plastic of high heat resistant.  相似文献   
2.
The artificially accurate design of nonmetal electrocatalysts’ active site has been a huge challenge because no pure active species with the specific structure could be strictly controlled by traditional synthetic methods. Species with a multiconfiguration in the catalyst hinder identification of the active site and the subsequent comprehension of the reaction mechanism. We have developed a novel electro-assisted molecular assembly strategy to obtain a pure pentagon ring on perfect graphene avoiding other reconstructed structures. More importantly, the active atom was confirmed by the subtle passivation process as the topmost carbon atom. Recognition of the carbon-defect electrocatalysis reaction mechanism was first downsized to the single-atom scale from the experimental perspective. It is expected that this innovative electro-assisted molecular assembly strategy could be extensively applied in the active structure-controlled synthesis of nonmetal electrocatalysts and verification of the exact active atom.  相似文献   
3.
A numerical model was developed and validated to investigate the fluid–structure interactions between fully developed pipe flow and core–shell-structured microcapsule in a microchannel. Different flow rates and microcapsule shell thicknesses were considered. A sixth-order rotational symmetric distribution of von Mises stress over the microcapsule shell can be observed on the microcapsule with a thinner shell configuration, especially at higher flow rate conditions. It is also observed that when being carried along in a fully developed pipe flow, the microcapsule with a thinner shell tends to accumulate stress at a higher rate compared to that with a thicker shell. In general, for the same microcapsule configuration, higher flow velocity would induce a higher stress level over the microcapsule shell. The deformation gradient was used to capture the microcapsule's deformation in the present study. The effect of Young's modulus on the microcapsule shell on the microcapsule deformation was investigated as well. Our findings will shed light on the understanding of the stability of core–shell-structured microcapsule when subjected to flow-induced shear stress in a microfluidic system, enabling a more exquisite control over the breakup dynamics of drug-loaded microcapsule for biomedical applications.  相似文献   
4.
Herein, we report a Mott-Schottky catalyst by entrapping cobalt nanoparticles inside the N-doped graphene shell (Co@NC). The Co@NC delivered excellent oxygen evolution activity with an overpotential of merely 248 mV at a current density of 10 mA cm–2 with promising long-term stability. The importance of Co encapsulated in NC has further been demonstrated by synthesizing Co nanoparticles without NC shell. The synergy between the hexagonal close-packed (hcp) and face-centered cubic (fcc) Co plays a major role to improve the OER activity, whereas the NC shell optimizes the electronic structure, improves the electron conductivity, and offers a large number of active sites in Co@NC. The density functional theory calculations have revealed that the hcp Co has a dominant role in the surface reaction of electrocatalytic oxygen evolution, whereas the fcc phase induces the built-in electric field at the interfaces with N-doped graphene to accelerate the H+ ion transport.  相似文献   
5.
International Journal of Theoretical Physics - The Majorana representation, which provides an intuitive way to represent the quantum state by stars on the Bloch sphere, has drawn considerable...  相似文献   
6.
In allogeneic transplantation, including the B6 anti-BALB.B settings, H60 and H4 are two representative dominant minor histocompatibility antigens that induce strong CD8 T-cell responses. With different distribution patterns, H60 expression is restricted to hematopoietic cells, whereas H4 is ubiquitously expressed. H60-specific CD8 T-cell response has been known to be dominant in most cases of B6 anti-BALB.B allo-responses, except in the case of skin transplantation. To understand the mechanism underlying the subdominance of H60 during allogeneic skin transplantation, we investigated the dynamics of the H60-specific CD8 T cells in B6 mice transplanted with allogeneic BALB.B tail skin. Unexpectedly, longitudinal bioluminescence imaging and flow cytometric analyses revealed that H60-specific CD8 T cells were not always subdominant to H4-specific cells but instead showed a brief dominance before the H4 response became predominant. H60-specific CD8 T cells could expand in the draining lymph node and migrate to the BALB.B allografts, indicating their active participation in the anti-BALB.B allo-response. Enhancing the frequencies of H60-reactive CD8 T cells prior to skin transplantation reversed the immune hierarchy between H60 and H4. Additionally, H60 became predominant when antigen presentation was limited to the direct pathway. However, when antigen presentation was restricted to the indirect pathway, the expansion of H60-specific CD8 T cells was limited, whereas H4-specific CD8 T cells expanded significantly, suggesting that the temporary immunodominance and eventual subdominance of H60 could be due to their reliance on the direct antigen presentation pathway. These results enhance our understanding of the immunodominance phenomenon following allogeneic tissue transplantation.  相似文献   
7.
Incorporation of a non-hexagonal ring into a nanographene framework can lead to new electronic properties. During the attempted synthesis of naphthalene-bridged double [6]helicene and heptagon-containing nanographene by the Scholl reaction, an unexpected azulene-embedded nanographene and its triflyloxylated product were obtained, as confirmed by X-ray crystallographic analysis and 2D NMR spectroscopy. A 5/7/7/5 ring-fused substructure containing two formal azulene units is formed, but only one of them shows an azulene-like electronic structure. The formation of this unique structure is explained by arenium ion mediated 1,2-phenyl migration and a naphthalene to azulene rearrangement reaction according to an in-silico study. This report represents the first experimental example of the thermodynamically unfavorable naphthalene to azulene rearrangement and may lead to new azulene-based molecular materials.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号