首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   3篇
化学   133篇
晶体学   1篇
力学   5篇
数学   6篇
物理学   46篇
  2023年   1篇
  2022年   8篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2013年   5篇
  2012年   10篇
  2011年   13篇
  2010年   7篇
  2009年   9篇
  2008年   6篇
  2007年   23篇
  2006年   10篇
  2005年   15篇
  2004年   8篇
  2003年   10篇
  2002年   10篇
  2001年   3篇
  2000年   5篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1976年   1篇
  1965年   1篇
  1964年   1篇
  1877年   2篇
  1868年   1篇
排序方式: 共有191条查询结果,搜索用时 31 毫秒
1.
Summary. Free radical couplings from furan, as cheap starting material, were studied in view of developing a rapid strategy en route to the synthesis of derivatives of nonactin. The chain containing the alcohol function was introduced in one or two steps in 86% yield. For the introduction of the second chain with the ester function two different coupling methods were tested. Starting from the advanced intermediates obtained nonactin derivatives can be prepared by catalytic hydrogenation of the furan ring.  相似文献   
2.
Low‐molecular‐weight poly(acrylic acid) (PAA) was synthesized by reversible addition fragmentation chain transfer polymerization with a trithiocarbonate as chain‐transfer agent (CTA). With a combination of NMR spectroscopy and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, the PAA end‐groups of the polymer were analyzed before and after neutralization by sodium hydroxide. The polymer prior to neutralization is made up of the expected trithiocarbonate chain‐ends and of the H‐terminated chains issued from a reaction of transfer to solvent. After neutralization, the trithiocarbonates are transformed into thiols, disulfides, thiolactones, and additional H‐terminated chains. By quantifying the different end‐groups, it was possible to demonstrate that fragmentation is the rate limiting step in the transfer reaction. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5439–5462, 2004  相似文献   
3.
A new fluorinated gallium phosphate, MIL-50, has been synthesized under mild hydrothermal conditions using 1,6-diaminohexane. The chemical formula of MIL-50 is Rb(2)Ga(9)(PO(4))(8)(HPO(4))(OH)F(6).2N(2)C(6)H(18).7H(2)O. The structure is a network of hexameric units of Ga(3)(PO(4))(3)F(2) and Ga(3)(PO(4))(2)(HPO(4))F(3) via corner sharing. It creates a three-dimensional open-framework delimiting 6- and 18-ring channels running along the c axis. The diprotonated 1,6-diaminohexane and water molecules are trapped within the 18-ring pores, whereas the rubidium cations reside in the 6-ring ones. A double quantum (31)P NMR experiment and partial charge calculations indicate that water molecules are present under the form of periodic small clusters, lowering the multiplicity of one phosphorus site, P3. Though water hops within the clusters, the motion leaves the water pattern periodic. Rubidium is so tightly embedded into the framework that water moving in the large 18-ring channels does not reach it, leaving it therefore dry. The crystal framework may be ascribed to the orthorhombic space group Cmc2(1) (n degrees 36), a = 32.1510(2), b = 17.2290(3), c = 10.2120(1) A. The periodic water pattern has a different symmetry than that of the framework. A method has been devised to superpose the two sublattices that coexist in the same unit cell in order to have full occupancy of each site and to perform Madelung summations. This original method is of general interest for most zeolitic materials exhibiting a different symmetry for the framework and the template sublattices.  相似文献   
4.
5.
6.
Sequential catalytic growth provides an efficient tool for the synthesis of carbon nanotubes periodically inserted with catalyst nanoparticles. Several synthesis parameters were found crucial in order to induce this particular growth mechanism. The presence of phosphorus is required to form metal phosphide particles active for the formation of carbon nanotubes with a matchstick morphology. The metal composition (Ni/Fe ratio) and the carbon supply have no influence on the nanofilament type but strongly affect the nanotube yield. The synthesis temperature induces important changes on both the nanofilament type and yield, which are correlated with important transformations of the catalyst layer in terms of composition, particle size, and physical state.  相似文献   
7.
Three new luminescent and redox-active Ru(II) complexes containing novel dendritic polypyridine ligands have been synthesized, and their absorption spectra, luminescence properties (both at room temperature in fluid solution and at 77 K in rigid matrix), and redox behavior have been investigated. The dendritic ligands are made of 1,10-phenanthroline coordinating subunits and of carbazole groups as branching sites. The first and second generation species of this novel class of dendritic ligands (L1 and L2, respectively; see Figure 1 for their structural formulas) have been prepared and employed. The metal dendrimers investigated are [Ru(bpy)(2)(L1)](2+) (1; bpy = 2,2'-bipyridine), [Ru(bpy)(2)(L2)](2+) (2), and [Ru(L1)(3)](2+) (3; see Figure 2). For the sake of completeness and comparison purposes, also the absorption spectra, redox behavior, and luminescence properties of L1 and L2 have been studied, together with the properties of 3,6-di(tert-butyl)carbazole (L0) and [Ru(bpy)(2)(phen)](2+) (4, phen = 1,10-phenanthroline). The absorption spectra of the free dendritic ligands show features which can be assigned to the various subunits (i.e., carbazole and phenanthroline groups) and additional bands at lower energies (at lambda > 300 nm) which are assigned to carbazole-to-phenanthroline charge-transfer (CT) transitions. These latter bands are significantly red-shifted upon acid and/or zinc acetate addition. Both L1 and L2 exhibit relatively intense luminescence at room temperature in fluid solution (lifetimes in the nanosecond time scale, quantum yields of the order of 10(-2)-10(-1)) and at 77 K in rigid matrix (lifetimes in the millisecond time scale). Such a luminescence is assigned to CT states at room temperature and to phenanthroline-centered pi-pi triplet levels at 77 K. The room-temperature luminescence of L1 and L2 is totally quenched by acid or zinc acetate. The metal dendrimers exhibit the typical absorption and luminescence properties of Ru(II) polypyridine complexes. In particular, metal-to-ligand charge-transfer (MLCT) bands dominate the visible absorption spectra, and formally triplet MLCT levels govern the excited-state properties. Excitation spectroscopy evidences that all the light absorbed by the dendritic branches is transferred with unitary efficiency to the luminescent MLCT states in 1-3, showing that the new metal dendrimers can be regarded as efficient light-harvesting antenna systems. All the free ligands and metal dendrimers exhibit a rich redox behavior (except L2 and 3, whose redox behavior was not investigated because of solubility reasons), with clearly attributable reversible carbazole- and metal-centered oxidation and polypyridine-centered reduction processes. The electronic interaction between the carbazole redox-active sites of the dendritic ligands is affected by Ru(II) coordination.  相似文献   
8.
There is a need for new, cost-effective drugs to treat leishmaniasis. A strategy based on traditional medicine practiced in Bolivia led to the discovery of the 2-substituted quinoline series as a source of molecules with antileishmanial activity and low toxicity. This review documents the development of the series from the first isolated natural compounds through several hundred synthetized molecules to an optimized compound exhibiting an in vitro IC50 value of 0.2 µM against Leishmania donovani, and a selectivity index value of 187, together with in vivo activity on the L. donovani/hamster model. Attempts to establish structure–activity relationships are described, as well as studies that have attempted to determine the mechanism of action. For the latter, it appears that molecules of this series act on multiple targets, possibly including the immune system, which could explain the observed lack of drug resistance after in vitro drug pressure. We also show how nanotechnology strategies could valorize these drugs through adapted formulations and how a mechanistic targeting approach could generate new compounds with increased activity.  相似文献   
9.
Optical transitions in single-wall boron nitride nanotubes are investigated by means of optical absorption spectroscopy. Three absorption lines are observed. Two of them (at 4.45 and 5.5 eV) result from the quantification involved by the rolling up of the hexagonal boron nitride (h-BN) sheet. The nature of these lines is discussed, and two interpretations are proposed. A comparison with single-wall carbon nanotubes leads one to interpret these lines as transitions between pairs of van Hove singularities in the one-dimensional density of states of boron nitride single-wall nanotubes. But the confinement energy due to the rolling up of the h-BN sheet cannot explain a gap width of the boron nitride nanotubes below the h-BN gap. The low energy line is then attributed to the existence of a Frenkel exciton with a binding energy in the 1 eV range.  相似文献   
10.
The first ligand-cored dendrimer based on branching Ru(II) centers and containing mixed polypyridine bridging ligands has been prepared; redox experiments suggest that the redox-active core is not reduced at the expected potential, probably as a consequence of shielding induced by the rigid dendritic array.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号