首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   5篇
力学   3篇
数学   20篇
物理学   3篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2013年   7篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2002年   4篇
  2000年   1篇
  1999年   1篇
排序方式: 共有26条查询结果,搜索用时 31 毫秒
1.
In this paper, a constant heat transfer coefficient present in a nonlinear Robin‐type boundary condition associated with an elliptic equation is reconstructed uniquely from a single boundary energy measurement. Two types of such boundary energy measurement are considered, and solvability theorems for the solution of the resulting nonlinear inverse problems are provided. Further, one‐dimensional numerical results are presented and discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
2.
This paper considers the inverse determination of the positive unknown thermal properties K(T), C(T) and the unknown temperature T(x, t) in the nonlinear transient heat conduction equation. In addition to prescribed initial and/or boundary values, specified continuously differentiable temperature data T(x0, t) with non-zero derivative at a single sensor location x = x0 is given. When K(T) and C(T) obey a certain relationship which enables one to linearise exactly the nonlinear heat equation then their dependence upon T is obtained explicitly, whilst the unknown temperature T(x, t) is obtained implicitly and is then calculated numerically. Results are presented and discussed for infinite, semi-infinite and finite slabs.  相似文献   
3.
We consider the inverse problem of determining the time‐dependent diffusivity in one‐dimensional heat equation with periodic boundary conditions and nonlocal over‐specified data. The problem is highly nonlinear and it serves as a mathematical model for the technological process of external guttering applied in cleaning admixtures from silicon chips. First, the well‐posedness conditions for the existence, uniqueness, and continuous dependence upon the data of the classical solution of the problem are established. Then, the problem is discretized using the finite‐difference method and recasts as a nonlinear least‐squares minimization problem with a simple positivity lower bound on the unknown diffusivity. Numerically, this is effectively solved using the lsqnonlin routine from the MATLAB toolbox. In order to investigate the accuracy, stability, and robustness of the numerical method, results for a few test examples are presented and discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
4.
A rigorous investigation of the identification of a heterogeneousflexural rigidity coefficient in the Euler-Bernoulli steady-statebeam theory in the presence of a prescribed load is presented.Mathematically, this study is an extension to higher-order differentialequations of the coefficient identification problem analysedby Marcellini (1982) for the one-dimensional Poisson equation.In addition, various types of boundary conditions are discussed.Conditions for the well-posedness of these inverse problemsare established and, furthermore, numerical results obtainedusing a regularization algorithm are presented.  相似文献   
5.
This paper investigates the inverse problem of determining a spacewise dependent heat source in the parabolic heat equation using the usual conditions of the direct problem and information from a supplementary temperature measurement at a given single instant of time. The spacewise dependent temperature measurement ensures that the inverse problem has a unique solution, but this solution is unstable, hence the problem is ill-posed. For this inverse problem, we propose an iterative algorithm based on a sequence of well-posed direct problems which are solved at each iteration step using the boundary element method (BEM). The instability is overcome by stopping the iterations at the first iteration for which the discrepancy principle is satisfied. Numerical results are presented for various typical benchmark test examples which have the input measured data perturbed by increasing amounts of random noise.  相似文献   
6.
In this paper the steady free convection boundary-layer along a semi-infinite, slightly inclined (both positive and negative) to the horizontal plate embedded in a porous medium with the flow generated by Newtonian heating has been investigated. The asymptotic solution near the leading edge and the full numerical solution along the whole plate domain have been obtained numerically, whilst the asymptotic solution far downstream along the plate has been obtained analytically. For a positive inclination the full numerical solution is in agreement with the asymptotic solutions. However, for a negatively inclined plate, only the small asymptotic solution near the leading edge of the plate can be predicted giving an insight that the model for a negatively inclined plate, whilst mathematically interesting, is not physically realistic.  相似文献   
7.
The inverse problem of determining the temperature and the time-dependent thermal diffusivity from various additional nonlocal information is investigated. These nonlocal conditions can come in the form of an internal or boundary energy, or, in the one-dimensional case, as a difference boundary temperature or heat flux so as to ensure the uniqueness of solution for the heat conduction equation with unknown thermal diffusivity coefficient. The Ritz-Galerkin method with satisfier function is employed to solve the inverse problems numerically. Numerical results are presented and discussed.  相似文献   
8.
In this paper, a meshless regularization method of fundamental solutions is proposed for a two-dimensional, two-phase linear inverse Stefan problem. The numerical implementation and analysis are challenging since one needs to handle composite materials in higher dimensions. Furthermore, the inverse Stefan problem is ill-posed since small errors in the input data cause large errors in the desired output solution. Therefore, regularization is necessary in order to obtain a stable solution. Numerical results for several benchmark test examples are presented and discussed.  相似文献   
9.
The inverse problem of determining a spacewise-dependent heatsource for the parabolic heat equation using the usual conditionsof the direct problem and information from one supplementarytemperature measurement at a given instant of time is studied.This spacewise-dependent temperature measurement ensures thatthis inverse problem has a unique solution, but the solutionis unstable and hence the problem is ill-posed. We propose avariational conjugate gradient-type iterative algorithm forthe stable reconstruction of the heat source based on a sequenceof well-posed direct problems for the parabolic heat equationwhich are solved at each iteration step using the boundary elementmethod. The instability is overcome by stopping the iterativeprocedure at the first iteration for which the discrepancy principleis satisfied. Numerical results are presented which have theinput measured data perturbed by increasing amounts of randomnoise. The numerical results show that the proposed procedureyields stable and accurate numerical approximations after onlya few iterations.  相似文献   
10.
In this paper, the steady‐state Oseen viscous flow equations past a known or unknown obstacle are solved numerically using the method of fundamental solutions (MFS), which is free of meshes, singularities, and numerical integrations. The direct problem is linear and well‐posed, whereas the inverse problem is nonlinear and ill‐posed. For the direct problem, the MFS computations of the fluid flow characteristics (velocity, pressure, drag, and lift coefficients) are in very good agreement with the previously published results obtained using other methods for the Oseen flow past circular and elliptic cylinders, as well as past two circular cylinders. In the inverse obstacle problem the boundary data and the internal measurement of the fluid velocity are minimized using the MATLAB© optimization toolbox lsqnonlin routine. Regularization was found necessary in the case the measured data are contaminated with noise. Numerical results show accurate and stable reconstructions of various star‐shaped obstacles of circular, bean, or peanut cross‐section.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号