首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
力学   1篇
  2001年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
Highly-resolved simulations and flow and transport in an alluvial system at the Lawrence Livermore National Laboratory (LLNL) site explore the role of diffusion in the migration and recovery of a conservative solute. Heterogeneity is resolved to the hydrofacies scale with a discretization of 10.0, 5.0 and 0.5m in the strike, dip and vertical directions of the alluvial-fan system. Transport simulations rely on recently developed random-walk techniques that accurately account for local dispersion processes at interfaces between materials with contrasting hydraulic and transport properties. Solute migration and recovery by pump and treat are shown to be highly sensitive to magnitude of effective diffusion coefficient. Further, transport appears significantly more sensitive to the diffusion coefficient than to local-scale dispersion processes represented by a dispersivity coefficient. Predicted hold back of solute mass near source locations during ambient migration and pump-and-treat remediation is consistent with observations at LLNL, and reminiscent of observations at the MADE site of Columbus Air Force Base, Mississippi. Results confirm the important role of diffusion in low-conductivity materials and, consequently, its impact on efficacy of pump-and-treat and other remedial technologies. In a typical alluvial system on a decadal time scale this process is, in part, fundamentally nonreversible because the average thickness of low-K hydrofacies is considerably greater than the mean-square length of penetration of the solute plume.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号