首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   1篇
化学   25篇
力学   3篇
数学   1篇
物理学   5篇
  2021年   1篇
  2020年   2篇
  2014年   1篇
  2013年   4篇
  2012年   5篇
  2011年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
  1996年   1篇
  1992年   2篇
  1986年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
1.
The first systematic study on the use of tricyanoborates as ligands is presented. The tricyanoborates [RB(CN)3]- (R = oct and Ph) can be prepared by direct cyanation of RBCl2 precursors as well as by thermolysis of the corresponding isocyanides [RB(NC)3]-. The first organo-cyanogallates [RGa(CN)3]- (R = Bu, C6H2-2,4,6-Me3) were prepared from the corresponding dichloride, the structure of Et4N[mesGa(CN3] being confirmed crystallographically. The reaction of equimolar [RB(CN)3]- (R = oct, Ph) and [Cu(MeCN)4]+ afforded two-dimensional polymers [RB(CN)3Cu(NCMe)]. The sheets arise via conjoined hexagonal B3Cu3(CN)6 rings with chair conformations. The reaction of excess [PhB(CN)3]- and [Cu(MeCN)4]+ gives the polymer [K(18-crown-6)]{Cu[PhB(CN)3]2}. Treatment of [PhB(CN)3]- with [Cu(PCy3)2(NCMe)x]PF6 gave the one-dimensional polymer [PhB(CN)3Cu(PCy3)2], wherein two of the three BCN substituents are coordinated.  相似文献   
2.
3.
4.
5.
6.
Related periodicities in properties of diatomic molecules are well known and periodic tables have already been constructed for some classes of molecules. The major difficulty is that two orthogonal periodicities are superposed, at 45° on the Z1,Z2 plane, on two others. Our proposed complete table is formed by cutting the plane along the Z1 and Z2 directions and stacking areas for similar molecules into 15 blocks. Evidence is presented that 15 is the correct number and that the stacking orders are optimal. It is shown that generalization to ionized molecules requires a fourth dimension, but that this 4-d architecture can be mapped into three dimensions. Computer curve-fitting of data has yielded initial results for re in three blocks. 116 data fitted to re = A + Inχ (where χ is area number, and A depends on the compartment, in the block) differ from tabulated data by ♂σ ? 3%. 254 predicted re are given, some of laser interest, some of superheavy (quasi) molecules, and some for molecules with superheavy atoms.  相似文献   
7.
1J(H-D), T(1min) and k(1) for H(2) dissociation from OsHX(H(2))(CO)L(2) have been measured for X = Cl, I, H (L = P(t-Bu)(2)Me or P(i-Pr)(3)), as well as for OsCl(2)(H(2))(CO)(P(i-Pr)(3))(2). For comparison, new data (including previously unobserved coupling constants) have been reported for W(HD)(CO)(3)(P(i-Pr)(3))(2). A comprehensive consideration of T(1min) data for over 20 dihydrogen complexes containing only 1-2 phosphines cis to H(2), together with a consideration of the shortest "conceivable" H-H distance for H(2) bound to a d(4) or d(6) metal, is used to argue that the "fast spinning" model is not appropriate for determining r(H-H) in such complexes. Regarding OsHX(H(2))(CO)L(2), the stronger electron-donor (lighter) halide, when cis to H(2), facilitates loss of H(2). The complete absence of pi-donor ability when X = H renders H(2) loss most difficult. However, a pi-donor trans to H(2) also makes H(2) loss unobservable. Within the series of isoelectronic, structurally analogous Os complexes, a longer H-H bond shows a larger DeltaG() for H(2) loss. However, this correlation does not continue to W(H(2))(CO)(3)(P(i-Pr)(3))(2), which has r(H-H) comparable to that of OsH(halide)(H(2))(CO)(P(i-Pr)(3))(2), but a significantly higher DeltaG(). This may originate from lack of a pi-donor ligand to compensate as H(2) leaves W.  相似文献   
8.
Condensation of [Cp*Rh(CH(3)NO(2))(n)](2+) and the tricyanoborate [PhB(CN)(3)](-) affords the hexagonal bipyramidal cage [[PhB(CN)(3)](6)[Cp*Rh](6)](6+), demonstrating that tetrahedral tricyanide building blocks can lead to novel cage structures.  相似文献   
9.
A series of heptametallic cyanide cages are described; they represent soluble analogues of defect-containing cyanometalate solid-state polymers. Reaction of 0.75 equiv of [Cp*Ru(NCMe)3]PF6, Et(4)N[Cp*Rh(CN)3], and 0.25 equiv of CsOTf in MeCN solution produced (Cs subset [CpCo(CN)3]4[Cp*Ru]3)(Cs subset Rh4Ru3). 1H and 133Cs NMR measurements show that Cs subset Rh4Ru3 exists as a single Cs isomer. In contrast, (Cs subset [CpCo(CN)3]4[Cp*Ru]3) (Cs subset Co4Ru3), previously lacking crystallographic characterization, adopts both Cs isomers in solution. In situ ESI-MS studies on the synthesis of Cs subset Rh4Ru3 revealed two Cs-containing intermediates, Cs subset Rh2Ru2+ (1239 m/z) and Cs subset Rh3Ru3+ (1791 m/z), which underscore the participation of Cs+ in the mechanism of cage formation. 133Cs NMR shifts for the cages correlated with the number of CN groups bound to Cs+: Cs subset Co4Ru4+ (delta 1 vs delta 34 for CsOTf), Cs subset Rh4Ru3 where Cs+ is surrounded by ten CN ligands (delta 91), Cs subset Co4Ru3, which consists of isomers with 11 and 10 pi-bonded CNs (delta 42 and delta 89, respectively). Although (K subset [Cp*Rh(CN)3]4[Cp*Ru]3) could not be prepared, (NH4 subset [Cp*Rh(CN)3]4[Cp*Ru]3) (NH4 subset Rh4Ru3) forms readily by NH4+-template cage assembly. IR and NMR measurements indicate that NH4+ binding is weak and that the site symmetry is low. CsOTf quantitatively and rapidly converts NH4 subset Rh4Ru3 into Cs subset Rh4Ru3, demonstrating the kinetic advantages of the M7 cages as ion receptors. Crystallographic characterization of CsCo4Ru3 revealed that it crystallizes in the Cs-(exo)1(endo)2 isomer. In addition to the nine mu-CN ligands, two CN(t) ligands are pi-bonded to Cs+. M subset Rh4Ru3 (M = NH4, Cs) crystallizes as the second Cs isomer, that is, (exo)2(endo)1, wherein only one CN(t) ligand interacts with the included cation. The distorted framework of NH4 subset Rh4Ru3 reflects the smaller ionic radius of NH4+. The protons of NH4+ were located crystallographically, allowing precise determination of the novel NH4...CN interaction. A competition experiment between calix[4]arene-bis(benzocrown-6) and NH4 subset Rh4Ru3 reveals NH4 subset Rh4Ru3 has a higher affinity for cesium.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号