首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   2篇
化学   30篇
力学   2篇
数学   1篇
物理学   4篇
  2023年   1篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
排序方式: 共有37条查询结果,搜索用时 203 毫秒
1.
Strong, surprising, and multifaceted effects of the width of the external surface layer Δ(ξ) and internal stresses on surface-induced pretransformation and phase transformations (PTs) are revealed. Using our further developed phase-field approach, we found that above some critical Δ(ξ)(*), a morphological transition from fully transformed layer to lack of surface pretransformation occurs for any transformation strain ε(t). It corresponds to a sharp transition to the universal (independent of ε(t)), strongly increasing the master relationship of the critical thermodynamic driving force for PT X(c) on Δ(ξ). For large ε(t), with increasing Δ(ξ), X(c) unexpectedly decreases, oscillates, and then becomes independent of ε(t). Oscillations are caused by morphological transitions of fully transformed surface nanostructure. A similar approach can be developed for internal surfaces (grain boundaries) and for various types of PTs and chemical reactions.  相似文献   
2.
Continuum Mechanics and Thermodynamics - A thermodynamically consistent phase field model for crack propagation is analyzed. The thermodynamic driving force for the crack propagation is derived...  相似文献   
3.
A new functionalized nanoporous silica gel with dipyridyl group (DPNSG) was synthesized. Then, the potentiometric response of the copper(II) ion was investigated at a carbon paste electrode chemically modified with this newly designed functionalized nanoporous silica gel. The electrodes with DPNSG proportions of 15.0% (w/w) demonstrated very stable potentials. Calibration plots with Nernstian slopes for Cu2+ were observed, 28.4 (±1.0) mV decade−1, over a wide linear concentration range (1.0 × 10−7 to 1.0 × 10−2 M). The electrode exhibited a detection limit of 8.0 × 10−8 M. Moreover, the selectivity coefficients measured by the match potential method in acetate buffer, pH 5.5, were investigated. The electrode presented a response time of ∼50 s, high performance, high sensitivity in a wide range of cation activities and good long-term stability (more than 9 months). The method was satisfactory and was used to determine the copper ion concentration in waste waters, contaminated by this metal.  相似文献   
4.
The aim of this work was to obtain an adsorptive stripping voltammetric method for the Ce(III) determination at a carbon paste electrode, chemically modified with N'‐[(2‐hydroxyphenyl)methylidene]‐2‐furohydrazide (NHMF). The electroanalytical procedure comprised two steps: the Ce(III) chemical accumulation at ?200 mV followed by the electrochemical detection of the Ce(III)/NHMF complex, using anodic stripping voltammetry. The factors, influencing the adsorptive stripping performance, were optimized including the modifier quantity in the paste, the electrolyte concentrations, the solution pH and the accumulation potential or time. The resulting electrode demonstrated a linear response over a wide range of Ce(III) concentration (5.0–90 nmol dm?3). The detection limit was found to be 0.8 nmol dm?3 on the basis of a signal to noise ratio of 3. The precision for six determinations of 10 and 55 nmol dm?3 Ce(III) was 5.6% and 2.1% (relative standard deviation), respectively. Application of the procedure to the determination of cerium in phosphate rock and wastewater samples gave good results.  相似文献   
5.
Russian Journal of Applied Chemistry - Magnetic nanoparticles and clay minerals combine to form a class of advanced nanocomposites that would possess exceptional adsorption, magnetism, and...  相似文献   
6.
In this work, Fe2TiO5 nanoparticles were used for improving the proton conductivity, and water and acid uptake of polybenzimidazole (PBI)-based proton exchange membranes. The nanocomposite membranes have been prepared using different amounts of Fe2TiO5 nanoparticles and dispersed into a PBI membrane with the solution-casting method. The prepared membranes were then physico-chemically and electrochemically characterized for use as electrolytes in high-temperature PEMFCs. The PBI/Fe2TiO5 membranes (PFT) showed a higher acid uptake and proton conductivity compared with the pure PBI membranes. The highest acid uptake (156 %) and proton conductivity (78 mS/cm at 180 °C) were observed for the PBI nanocomposite membranes containing 4 wt% of Fe2TiO5 nanoparticles (PFT4). The PFT4 composite membrane showed 380 mW/cm2 power density and 760 mA/cm2 current density in 0.5 V at 180 °C at dry condition. The above results indicated that the PFT4 nanocomposite membranes could be utilized as proton exchange membranes for high-temperature fuel cells.  相似文献   
7.
Room temperature ionic liquids (RTILs), 1‐n‐butyl‐3‐methylimidazolium tetrafluoroborate, [bmim]BF4, and multiwalled carbon nanotubes (MWCNTs) were used for improvement of a praseodymium carbon paste ion selective sensor response. [bmim]BF4 can be a better binder than mineral oils. MWCNTs have a good conductivity which helps the transduction of the signal in carbon paste electrode. The characteristics of these electrodes as potentiometric sensors were evaluated and compared with PVC membrane sensor. The results indicate that potentiometric sensor constructed with ionic liquid shows an increase in performance in terms of Nernstian slope, selectivity, response time, and response stability compared to Pr(III) PVC membrane sensor.  相似文献   
8.
A copper(II) ion-selective PVC membrane sensor based on 2-(1'-(4'-(1'-hydroxy-2'-naphthyl)methyleneamino)butyl iminomethyl)-1-naphthol (BHNB) as a novel Schiff base containing a sensing material has been successfully developed. The sensor exhibits a good linear response of 29 mV per decade within the concentration range of 10(-1)-10(-6) M of Cu2+. The sensor shows good selectivity for copper(II) ion in comparison with alkali, alkaline earth, transition and heavy metal ions. The BHNB-based sensor is suitable for use with aqueous solutions of pH 3.5-7.0 and displays minimal interference by Sr(II), Cd(II), Hg(II), Zn(II) and Pb(II), which are known to interfere with other previously suggested electrodes. The proposed membrane electrode was used as a sensor for determining the Cu(II) content in black tea samples. It was also applied as an indicator electrode in the potentiometric titration of Cu2+ ions with EDTA.  相似文献   
9.
Molecular imprinting is a useful technique for the preparation of functional materials with molecular recognition properties. In this work, a biomimetic potentiometric sensor, based on a non-covalent imprinted polymer, was fabricated for the recognition and determination of hydroxyzine in tablets and biological fluids. The molecularly imprinted polymer (MIP) was synthesized by precipitation polymerization, using hydroxyzine dihydrochloride as a template molecule, methacrylic acid (MAA) as a functional monomer and ethylene glycol dimethacrylat (EGDMA) as a cross-linking agent. The sensor showed a high selectivity and a sensitive response to the template in aqueous system. The MIP-modified electrode exhibited a Nernstian response (29.4 ± 1.0 mV decade−1) in a wide concentration range of 1.0 × 10−6 to 1.0 × 10−1 M with a lower detection limit of 7.0 × 10−7 M. The electrode demonstrated a response time of ∼15 s, a high performance and a satisfactory long-term stability (more than 5 months). The method has the requisite accuracy, sensitivity and precision to assay hydroxyzine in tablets and biological fluids.  相似文献   
10.
Elasticity solution is presented for finitely long, simply-supported, functionally graded shallow and non-shallow shell panel with two piezoelectric layers under pressure and electrostatic excitation. The functionally graded panel is assumed to be made of many sub panels. Each sub panel is considered as an isotropic layer. Material’s properties in each layer are constant and functionally graded properties are resulted by suitable arrangement of layers in multilayer panel. In each interface between two layers, stress and displacement continuities are satisfied. The highly coupled partial differential equations (p.d.e.) are reduced to ordinary differential equations (o.d.e.) with variable coefficients for non-shallow panel and constant coefficients for shallow shell panel by means of trigonometric function expansion in circumferential and longitudinal directions. The resulting ordinary differential equations are solved by Galerkin finite element method and Newmark method is used to march in time. Numerical examples are presented for functionally graded shell panel with a piezoelectric layer as an actuator in external surface and a piezoelectric layer as a sensor in internal surface and the results of the shallow and non-shallow panels are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号