首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
力学   2篇
物理学   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
ABSTRACT

In this work, we provide an integrated pipeline for the model-order reduction of turbulent flows around parametrised geometries in aerodynamics. In particular, free-form deformation is applied for geometry parametrisation, whereas two different reduced-order models based on proper orthogonal decomposition (POD) are employed in order to speed-up the full-order simulations: the first method exploits POD with interpolation, while the second one is based on domain decomposition. For the sampling of the parameter space, we adopt a Greedy strategy coupled with Constrained Centroidal Voronoi Tessellations, in order to guarantee a good compromise between space exploration and exploitation. The proposed framework is tested on an industrially relevant application, i.e. the front-bumper morphing of the DrivAer car model, using the finite-volume method for the full-order resolution of the Reynolds-Averaged Navier–Stokes equations.  相似文献   
2.
The effect of discontinuity in the state variables on optimization problems is investigated on the quasi-one-dimensional Euler equations in the discrete level. A pressure minimization problem and a pressure matching problem are considered. We find that the objective functional can be smooth in the continuous level and yet be non-smooth in the discrete level as a result of the shock crossing grid points. Higher resolution can exacerbate that effect making grid refinement counter productive for the purpose of computing the discrete sensitivities. First and second order sensitivities, as well as the adjoint solution, are computed exactly at the shock and its vicinity and are compared to the continuous solution. It is shown that in the discrete level the first order sensitivities contain a spike at the shock location that converges to a delta function with grid refinement, consistent with the continuous analysis. The numerical Hessian is computed and its consistency with the analytical Hessian is discussed for different flow conditions. It is demonstrated that consistency is not guaranteed for shocked flows. We also study the different terms composing the Hessian and propose some stable approximation to the continuous Hessian.  相似文献   
3.
We present a finite-volume scheme for compressible Euler flows where the grid is cartesian and it does not fit to the body. The scheme, based on the definition of an ad hoc Riemann problem at solid boundaries, is simple to implement and it is formally second order accurate. Error convergence rates with respect to several exact test cases are investigated and examples of flow solutions in one, two and three dimensions are presented.  相似文献   
4.
A contour dynamics algorithm is presented for vortex patches in unbounded domains and in simply connected bounded domains. It is based on conformal mapping and spectral analysis. The inside and outside of a vortex patch are analytically mapped onto the inside and outside of the unit circles of two different complex planes. The flow field is determined by matching the inner and outer flows on the patch boundary. Following the Legras and Zeitlin conformal dynamics concept, the time evolution of the patch boundary is expressed by means of the time derivatives of the mapping functions. The presence of a bounding wall, which can be permeable and movable, is considered. The geometry and dynamics of the patch and the flow velocity on the bounding wall are represented by Fourier series; by assuming their coefficients as control parameters, the proposed formulation can be appealing for optimization and control purposes. Two numerical examples of the proposed technique are presented.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号