首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
力学   6篇
  2012年   2篇
  2010年   1篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
A specific flow rules and the corresponding constitutive elasto-viscoplastic model combined with new experimental strategy are introduced in order to represent a spheroidal graphite cast-iron behaviour on a wide range of strain, strain rate and temperature. A “full model” is first proposed to correctly reproduce the alloy behaviour even for very small strain levels. A “light model” with a bit poorer experimental agreement but a simpler formulation is also proposed. These macroscopic models, whose equations are based on physical phenomena observed at the dislocation scale, are able to cope with the various load conditions tested – progressive straining and cyclic hardening tests – and to correctly describe anisothermal evolution. The accuracy of these two models and the experimental databases to which they are linked is estimated on different types of experimental tests and compared with the accuracy of more standard Chaboche-type constitutive models. Each test leads to the superiority of the “full model”, particularly for slow strain rates regimes. After developing a material user subroutine, FEM simulations are performed on Abaqus for a car engine exhaust manifold and confirm the good results obtained from the experimental basis. We obtain more accurate results than those given by more traditional laws. A very good correlation is observed between the simulations and the engine bench tests.  相似文献   
2.
A method for the solution of cyclic thermomechanical nonlinear problems is presented: it is a Direct Cyclic Method which is an alternative approach to classical methods. It consists in directly seeking the asymptotic response of an inelastic structure subjected to a periodic thermomechanical loading without following the loading path. It is based on the Large Time Increment Method, the periodicity of the limit state and the Fourier transform. To cite this article: M.H. Maitournam et al., C. R. Mecanique 330 (2002) 703–708.  相似文献   
3.
The high-cycle fatigue criteria based on a macroscopic–mesoscopic scale interpretation, initiated by Dang Van, were used essentially for polycrystalline materials. In the existing criteria the material isotropy at both mesoscopic and macroscopic scales plays a key role. The purpose of this paper is to revisit the macroscopic to mesoscopic fatigue approach taking into account the material anisotropy and some results obtained by Bui. The possible applications are some anisotropic steels or monocrystalline structures such as stitanium turbine blades. To cite this article: F. Cano et al., C. R. Mecanique 332 (2004).  相似文献   
4.
5.
The numerical study of plasticity-induced crack closure using the node-release technique presents many difficulties widely studied in literature. For instance various rules, proposed for overcoming mesh sensitivity, are challenged by more recent studies. This paper intends to propose and evaluate a numerical method for the investigation of crack propagation under fatigue loading, and particularly for the assessment of plasticity-induced crack closure in three-dimension. The method is an extension of the “steady-state method” to cyclic loadings. The steady-state method allows a direct computation (on a fixed mesh, without releasing nodes) of stress and strain fields around the crack tip and in the wake for a steady crack growth. The method is extended to simulate crack propagation under fatigue loading. Therefore it constitutes a valuable numerical tool for gaining insight into the physics of crack propagation, as it provides accurate mechanical fields around the crack tip and their relation with crack growth rate, various loading modes and parameters. The proposed method is also compared with the classical node-release technique. A very good agreement between the two methods is found. However the steady-state method needs much less mesh refinement and computational time. Following an analysis of some features of the fatigue crack, a discussion on a crack closure criterion is opened, and a reliable criterion for the determination of local crack closure is proposed.  相似文献   
6.
An alternative numerical method to solve structural evolution problems is presented. It belongs to the family of Large Time Increment Methods. The problem is solved on the whole time interval separating a global stage where a SA and KA solution is searched and a local stage where the constitutive law is satisfied. To solve the global stage, consuming the most CPU time, the mechanical fields are decomposed in a wavelet basis and the equilibrium is solved only for the largest coefficients. To cite this article: F. Comte et al., C. R. Mecanique 334 (2006).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号