首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   2篇
化学   31篇
力学   5篇
数学   1篇
物理学   4篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   7篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2006年   4篇
  2005年   4篇
  2002年   1篇
  1998年   1篇
  1996年   1篇
  1991年   1篇
排序方式: 共有41条查询结果,搜索用时 31 毫秒
1.
Transmembrane proteins (TMPs), particularly ion channels and receptors, play key roles in transport and signal transduction. Many of these proteins are pharmacologically important and therefore targets for drug discovery. TMPs can be reconstituted in planar-supported lipid bilayers (PSLBs), which has led to development of TMP-based biosensors and biochips. However, PSLBs composed of natural lipids lack the high stability desired for many technological applications. One strategy is to use synthetic lipid monomers that can be polymerized to form robust bilayers. A key question is how lipid polymerization affects TMP structure and activity. In this study, we have examined the effects of UV polymerization of bis-Sorbylphosphatidylcholine (bis-SorbPC) on the photoactivation of reconstituted bovine rhodopsin (Rho), a model G-protein-coupled receptor. Plasmon-waveguide resonance spectroscopy (PWR) was used to compare the degree of Rho incorporation and activation in fluid and poly(lipid) PSLBs. The results show that reconstitution of Rho into a supported lipid bilayer composed only of bis-SorbPC, followed by photoinduced lipid cross-linking, does not measurably diminish protein function.  相似文献   
2.
Mullite is an aluminosilicate widely used as a structural material for high temperature applications. This paper studies the effect of the gelation temperature on the synthesis of two mullite precursors: polymeric and colloidal silica, using both in fully-hydrolyzed silica sol, derived from sodium silicate. The gels were synthesized using aqueous silicic acid and aluminum nitrate. Ethylene glycol was added into polymeric gels. Two gelation temperatures were used: 80 and 100 °C. In the polymeric precursor, the increasing of the gelation temperature caused an increase in the silica incorporation inside the mullite crystalline lattice at 1,000 °C, and it also generated an increase in the reaction extent at all calcination temperatures. In the colloidal precursors, these effects were more intense than in the polymeric precursors in terms of yield. Colloidal samples calcined at 1,250 °C crystallized cristobalite and alpha alumina in addition to mullite when they were previously gelled at 80 °C. On the other hand, the same sample gelled at 100 °C led to only crystallized mullite. The reaction extent increased by more than 20 % for colloidal samples gelled at 100 °C compared to colloidal samples gelled at 80 °C (calcined at 1,250 °C). This increase was due to the almost total incorporation of alumina and silica in the crystalline lattice of mullite.  相似文献   
3.
Highly enantioselective catalytic reductive coupling of allyl acetate with acetylenic ketones occurs in a chemoselective manner in the presence of aliphatic or aromatic ketones. This method was used to construct C14‐C23 of pladienolide D in half the steps previously required.  相似文献   
4.
(+)-Bergenin (1) was isolated from Sacoglottis uchi, a species of vegetable found in the Amazon region and popularly used for the treatment of several hepatic problems. The structure of 1 was fully characterized using IR, GC-MS and NMR (1D and 2D) analyses. This phytoconstituent has been used as an oriental folk medicine for the treatment of many diseases and shows antihepatotoxic properties. Tests with beta-carotene, DPPH and a heterogeneous Fenton system were carried out, confirming the antioxidant activity of 1. Theoretical calculations were performed to investigate the formation of the radical derivatives of 1 using *H, *OH, *CH(3), and *CCl(3) as initiator radicals. DFT thermodynamic calculations showed that the methoxyl group (O-6-CH(3)) is the most favorable site for radical attack. Frontier molecular orbital analysis showed that nucleophilic radical attack is favored on the aromatic ring of 1 where the LUMO is localized, with antibonding character with respect to the O-6-CH(3) bond. The possibilities of attack at other sites on 1 were investigated in detail in order to understand the regiospecificity of this reaction.  相似文献   
5.
Tensorial decompositions and projections are used to study the performance of algebraic non-linear models and predict the anisotropy of the Reynolds stresses. Direct numerical simulation (DNS) data for plane channel flows at friction Reynolds number (Reτ = 180, 395, 590, 1000), and for the boundary layer using both DNS (Reτ = 359, 830, 1271) and experimental data (Reτ = 2680, 3891, 4941, 7164) are used to build and evaluate the models. These data are projected into tensorial basis formed from the symmetric part of mean velocity gradient and non-persistence-of-straining tensor. Six models are proposed and their performances are investigated. The scalar coefficients for these six different levels of approximations of the Reynolds stress tensor are derived, and made dimensionless using the classical turbulent scales, the kinetic turbulent energy (κ) and its dissipation rate (ε). The dimensionless coefficients are then coupled with classical wall functions. One model is selected by comparing the predicted Reynolds stress components with experimental and DNS data, presenting a good prediction for the shear and normal Reynolds stresses.  相似文献   
6.
Solid‐state NMR spectroscopy gives a powerful avenue for investigating G protein‐coupled receptors and other integral membrane proteins in a native‐like environment. This article reviews the use of solid‐state 2H NMR to study the retinal cofactor of rhodopsin in the dark state as well as the meta I and meta II photointermediates. Site‐specific 2H NMR labels have been introduced into three regions (methyl groups) of retinal that are crucially important for the photochemical function of rhodopsin. Despite its phenomenal stability 2H NMR spectroscopy indicates retinal undergoes rapid fluctuations within the protein binding cavity. The spectral lineshapes reveal the methyl groups spin rapidly about their three‐fold (C3) axes with an order parameter for the off‐axial motion of For the dark state, the 2H NMR structure of 11‐cis‐retinal manifests torsional twisting of both the polyene chain and the β‐ionone ring due to steric interactions of the ligand and the protein. Retinal is accommodated within the rhodopsin binding pocket with a negative pretwist about the C11=C12 double bond. Conformational distortion explains its rapid photochemistry and reveals the trajectory of the 11‐cis to trans isomerization. In addition, 2H NMR has been applied to study the retinylidene dynamics in the dark and light‐activated states. Upon isomerization there are drastic changes in the mobility of all three methyl groups. The relaxation data support an activation mechanism whereby the β‐ionone ring of retinal stays in nearly the same environment, without a large displacement of the ligand. Interactions of the β‐ionone ring and the retinylidene Schiff base with the protein transmit the force of the retinal isomerization. Solid‐state 2H NMR thus provides information about the flow of energy that triggers changes in hydrogen‐bonding networks and helix movements in the activation mechanism of the photoreceptor.  相似文献   
7.
The structural and photochemical changes in rhodopsin due to absorption of light are crucial for understanding the process of visual signaling. We investigated the structure of trans-retinal in the metarhodopsin I photointermediate (MI), where the retinylidene cofactor functions as an antagonist. Rhodopsin was regenerated using retinal that was (2)H-labeled at the C5, C9, or C13 methyl groups and was reconstituted with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. Membranes were aligned by isopotential centrifugation, and rhodopsin in the supported bilayers was then bleached and cryotrapped in the MI state. Solid-state (2)H NMR spectra of oriented rhodopsin in the low-temperature lipid gel state were analyzed in terms of a static uniaxial distribution (Nevzorov, A. A.; Moltke, S.; Heyn, M. P.; Brown, M. F. J. Am. Chem. Soc. 1999, 121, 7636-7643). The line shape analysis allowed us to obtain the methyl bond orientations relative to the membrane normal in the presence of substantial alignment disorder (mosaic spread). Relative orientations of the methyl groups were used to calculate effective torsional angles between the three different planes that represent the polyene chain and the beta-ionone ring of retinal. Assuming a three-plane model, a less distorted structure was found for retinal in MI compared to the dark state. Our results are pertinent to how photonic energy is channeled within the protein to allow the strained retinal conformation to relax, thereby forming the activated state of the receptor.  相似文献   
8.
The conversion of glucose and fructose into gluconic acid (GA) and sorbitol (SOR) was conducted in a batch reactor with free (CTAB-treated or not) or immobilized cells of Zymomonas mobilis. High yields (more than 90%) of gluconic acid and sorbitol were attained at initial substrate concentration of 600 g/L (glucose plus fructose at 1:1 ratio), using cells with glucose-fructose-oxidoreductase activity of 75 U/L. The concentration of the products varied hyperbolically with time according to the equations (GA)=t(GA)(max)/(W(GA) +t), (SOR)=t (SOR)(max)/(W(Sor)+t), v(GA)=[W(GA) (GA)(max)]/(W(GA)+t)(2) and V(SOR)=[W(SOR) (SOR)(max)]/(W(SOR)+t)(2). Taking the test carried out with free CTAB-treated cells as an example, the constant parameters were (GA)(max)= 541 g/L, (SOR)(max)=552 g/L, W(GA)=4.8h, W(SOR)=4.9h, upsilon(GA)=112.7 g/L. and upsilon(SOR)=112.7 g/L.  相似文献   
9.
This paper presents numerical simulations of Newtonian and viscoelastic flows through a 180° curved duct of square cross section with a long straight outlet region. A particular attention is paid to the development of the flow in the output rectangular region after the curved part. The viscoelastic fluid is modeled using the constitutive equation proposed by Phan–Thien–Tanner (PTT). The numerical results, obtained with a finite-volume method, are shown for three different Dean numbers (125,137,150)(125,137,150) and for three Deborah numbers (0.1,0.2,0.3)(0.1,0.2,0.3). The necessary outlet length to impose boundary conditions is presented and discussed for these cases. Streamlines and vortex formation are shown to illustrate and analyze the evolution of the secondary flow in this region.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号