首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
力学   1篇
物理学   1篇
  2003年   1篇
  1999年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Nuclear magnetic resonance imaging (NMRI) techniques were employed to identify and selectively image biological films (biofilm) growing in aqueous systems. Biofilms are shown to affect both the longitudinal (T1) and transverse (T2) NMR relaxation time values of proximal water hydrogens. Results are shown for biofilm growth experiments performed in a transparent parallel-plate reactor. A comparison of biofilm distributions by both NMR and optical imaging yielded general agreement for both an open-flow system and an idealized porous system (the reactor without and with packed glass beads, respectively). The selective imaging of biofilm by relaxation NMRI is dependent upon the resolution of relaxation times for the fluid phases, dynamic range, and signal-to-noise ratio. For open-flow systems, the use of a rapid and quantitative T2-sorted NMRI technique was preferred. For porous systems where T2 values are generally more similar, a T1-weighted technique was preferred.  相似文献   
2.
This paper addresses several issues related to the modeling and experimental design of relative permeabilities used for simulating gas condensate well deliverability. Based on the properties of compositional flow equations, we make use of the fact that relative permeability ratio k rg/k ro is a purely thermodynamic variable, replacing saturation, when flow is steady-state. The key relation defining steady-state flow in gas condensate wells is relative permeability k rg as a function of k rg/k ro. Consequently, determination of saturation and k r as a function of saturation is not important for this specific calculation. Once the k rg=f(k rg/k ro) relationship is experimentally established and correlated with capillary number (N c), accurate modeling of condensate blockage is possible. A generalized model is developed for relative permeability as the function of k rg/k ro and capillary number. This model enables us to link the immiscible or rock curves with miscible or 'straight-line curves by a transition function dependent on the capillary number. This model is also extended to the case of high-rate, inertial gas flow within the steady-state condensate blockage regionand locally at the wellbore. We have paid particular attention to the effect of hysteresis on the relation k rg=f(k rg/k ro), based on our observation that many repeated cycles of partial/complete imbibition and drainage occur in the near-well region during the life of a gas condensate well. Finally, the composite effect of condensate blockage is handled using a Muskat pseudopressure model, where relative permeabilities are corrected for the positive effect of capillary number dependence and the negative effect of inertial high velocity flow. Special steady-state experimental procedures have been developed to measure k rg as a function of k rg/k ro and N c. Saturations, though they can be measured, are not necessary. An approach for fitting steady-state gas condensate relative permeability data has been developed and used for modeling relative permeability curves.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号