首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
力学   2篇
  2021年   1篇
  2014年   1篇
排序方式: 共有2条查询结果,搜索用时 359 毫秒
1
1.
Nonlinear Dynamics - The objective of this paper is the realization of a desired frequency–amplitude dependence of a specific vibration mode of a nonlinear system. To this end, we introduce...  相似文献   
2.
In the present study we classify the periodic orbits of a squarely packed, uncompressed and undamped, homogeneous granular crystal, assuming that all elastic granules oscillate with the same frequency (i.e., under condition of 1:1 resonance); this type of Hamiltonian periodic orbits have been labeled as nonlinear normal modes. To this end we formulate an auxiliary system which consists of a two-dimensional, vibro-impact lattice composed of non-uniform “effective particles” oscillating in an anti-phase fashion. The analysis is based on the idea of balancing linear momentum in both horizontal and vertical directions for separate, groups of particles, whereby each such a group is represented by the single effective particle of the auxiliary system. It is important to emphasize that the auxiliary model can be defined for general finite, squarely packed granular crystals composed of n rows and m columns. The auxiliary model is successful in predicting the total number of such periodic orbits, as well as the amplitude ratios for different periodic regimes including strongly localized ones. In fact this methodology enables one to systematically study the generation of mode localization in these strongly nonlinear, highly degenerate dynamical systems. Good correspondence between the results of the theoretical model and direct numerical simulations is observed. The results presented herein can be further extended to study the intrinsic dynamics of the more complex granular materials, such as heterogeneous two-dimensional and three-dimensional granular crystals and multi-layered structures.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号