首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
力学   3篇
物理学   1篇
  2022年   1篇
  2017年   1篇
  2015年   1篇
  2011年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Large-Eddy Simulation (LES) has become a potent tool to investigate instabilities in swirl flows even for complex, industrial geometries. However, the accurate prediction of pressure losses on these complex flows remains difficult. The paper identifies localised near-wall resolution issues as an important factor to improve accuracy and proposes a solution with an adaptive mesh h-refinement strategy relying on the tetrahedral fully automatic MMG3D library of Dapogny et al. (J. Comput. Phys. 262, 358-378, 2014) using a novel sensor based on the dissipation of kinetic energy. Using a joint experimental and numerical LES study, the methodology is first validated on a simple diaphragm flow before to be applied on a swirler with two counter-rotating passages. The results demonstrate that the new sensor and adaptation approach can effectively produce the desired local mesh refinement to match the target losses, measured experimentally. Results shows that the accuracy of pressure losses prediction is mainly controlled by the mesh quality and density in the swirler passages. The refinement also improves the computed velocity and turbulence profiles at the swirler outlet, compared to PIV results. The significant improvement of results confirms that the sensor is able to identify the relevant physics of turbulent flows that is essential for the overall accuracy of LES. Finally, in the appendix, an additional comparison of the sensor fields on tetrahedral and hexahedral meshes demonstrates that the methodology is broadly applicable to all mesh types.  相似文献   
2.
3.
4.
This paper presents an analysis of data generated by means of large eddy simulation for a single-stream, isothermal Mach 0.9 jet. The acoustic field is decomposed into Fourier modes in the azimuthal direction, and filtered by means of a continuous wavelet transform in the temporal direction. This allows the identification of temporally localised, high-amplitude events in the radiated sound field for each of the azimuthal modes. Once these events have been localised, the flow field is analysed so as to determine their cause. Results show high-amplitude, intermittent sound radiation for azimuthal modes 0 and 1. The mode-0 radiation, which dominates low-angle emission, is found to result from the temporal modulation of a basic axisymmetric wave-packet structure within the flow. Similar intermittent activity, observed, again within the flow, for azimuthal mode 1 suggests a link between the modes 0 and 1 dynamics. Both the amplitude and spatial extent of the axisymmetric wave-packet are modulated, and the strongest axisymmetric propagative disturbances are found to radiate from the downstream end of the wave-packet at moments when the wave envelope becomes truncated. The observed behaviour is modelled using a line-source wave-packet ansatz which includes parameters that account for the said modulation. Inclusion of these parameters, which allow the wave-packet to “jitter” in a manner similar to that observed, leads to good quantitative agreement (accurate to within 1.5 dB), at low emission angles, with the acoustic field of the LES. This result is in contrast with results obtained using a time-averaged wave-packet (one which does not jitter), for which a 12 dB error is observed. This result shows that the said modulations are the salient source feature for the low-angle sound emission of the jet considered. Analysis of a longer time series shows the occurrence of several similar high-amplitude bursts in the axisymmetric mode of the acoustic pressure, and a calculation of the radiated sound for this longer time-series, again using the wave-packet ansatz, once again leads to good agreement with the LES (now accurate to within 1 dB).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号