首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   32篇
  国内免费   9篇
化学   112篇
力学   4篇
数学   6篇
物理学   39篇
  2024年   1篇
  2023年   7篇
  2022年   9篇
  2021年   7篇
  2020年   15篇
  2019年   10篇
  2018年   13篇
  2017年   6篇
  2016年   17篇
  2015年   6篇
  2014年   13篇
  2013年   11篇
  2012年   12篇
  2011年   14篇
  2010年   12篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  1999年   1篇
排序方式: 共有161条查询结果,搜索用时 156 毫秒
1.
Journal of Theoretical Probability - We investigate the space-time regularity of the local time associated with Volterra–Lévy processes, including Volterra processes driven by $$\alpha...  相似文献   
2.
3.
Imines are important intermediates in drug synthesis. Photocatalytic aerobic oxidative coupling of amines has been considered as a clean and promising way to produce imines and has attracted great attention. Herein, we designed and synthesized a novel two-dimensional porphyrin-based covalent organic framework (Por-BC-COF) which adopts an AA stacking mode with excellent crystallinity, high Brunauer–Emmett–Teller surface areas (1200 m2 g−1), wide light absorption range (200–1300 nm) and good stability in a variety of organic solvents. Por-BC-COF can be used as a metal-free heterogeneous photocatalyst for the photocatalytic oxidation of amines to imines under visible light and red light with a high yield (97 %). This work presents a novel and efficient COF photocatalyst in the application of light-driven organic synthesis.  相似文献   
4.
5.
Adding insulating polymers to conjugated polymers is an efficient strategy to tailor their mechanical properties for flexible organic electronics. In this work, we selected two insulating polymers as additives for high-performance photoactive layers and investigated the mechanical and photovoltaic properties in organic solar cells (OSCs). The insulating polymers were found to reduce the electron mobilities in the photoactive layers, and hence the power conversion efficiencies were significantly decreased. More importantly, we found that the insulating polymers exhibited negative effect on the mechanical properties of the photoactive layers, with reduced Young's modulus and low crack onset strains. Further studies revealed that the insulating polymers had poor miscibility with the photoactive layers, providing large domains and more cavities in blend thin films, which act as negative effect for the tensile test. The studies indicate that rational selection of insulating polymers, especially enhancing the non-covalent interaction with the photoactive layers, will be critically important for the stretchable OSCs.  相似文献   
6.
Two chiral carboxylic acid functionalized micro‐ and mesoporous metal–organic frameworks (MOFs) are constructed by the stepwise assembly of triple‐stranded heptametallic helicates with six carboxylic acid groups. The mesoporous MOF with permanent porosity functions as a host for encapsulation of an enantiopure organic amine catalyst by combining carboxylic acids and chiral amines in situ through acid–base interactions. The organocatalyst‐loaded framework is shown to be an efficient and recyclable heterogeneous catalyst for the asymmetric direct aldol reactions with significantly enhanced stereoselectivity in relative to the homogeneous organocatalyst.  相似文献   
7.
A gas‐phase approach to form Zn coordination sites on metal–organic frameworks (MOFs) by vapor‐phase infiltration (VPI) was developed. Compared to Zn sites synthesized by the solution‐phase method, VPI samples revealed approximately 2.8 % internal strain. Faradaic efficiency towards conversion of CO2 to CO was enhanced by up to a factor of four, and the initial potential was positively shifted by 200–300 mV. Using element‐specific X‐ray absorption spectroscopy, the local coordination environment of the Zn center was determined to have square‐pyramidal geometry with four Zn?N bonds in the equatorial plane and one Zn‐OH2 bond in the axial plane. The fine‐tuned internal strain was further supported by monitoring changes in XRD and UV/Visible absorption spectra across a range of infiltration cycles. The ability to use internal strain to increase catalytic activity of MOFs suggests that applying this strategy will enhance intrinsic catalytic capabilities of a variety of porous materials.  相似文献   
8.
Nanosized copper particles are widely used in fields of lubricants, polymers/plastic, metallic coating and ink. Recently, we found that copper particles in different sizes can lead to different toxicological effects. To clarify the target organs of copper particles of different sizes, the inductively coupled plasma mass spectroscopy (ICP-MS) was employed to evaluate the distribution of copper in different organs of mice after a single dose oral exposure. The results suggest that the main target organs for copper nanoparticles are kidney, liver and blood. Liver is the main damaged organ.  相似文献   
9.
Stable colloidal dispersions of nanostructured semifluorinated acrylic particles with an unfluorinated core and an outer layer consisting of copolymers of the highly hydrophobic and lipophobic heptadecafluorodecyl methacrylate (FMA) were successfully synthesized with the assistance of three different cyclodextrins as phase‐transfer catalysts: β‐cyclodextrin (β‐CD), hydroxypropyl β‐cyclodextrin (HpCD), and methyl β‐cyclodextrin (MeCD). While all the cyclodextrins form a stable inclusion complex (IC) with FMA, only the ICs with the more hydrophilic HpCD and MeCD are soluble in water. Nevertheless, incorporation of FMA in the particle shell copolymer could be achieved also when using β‐CD. On the other hand, the morphology of the nanostructured particles was characterized by a “patchy” fluorinated shell dependent on the cyclodextrin used, the best results being obtained with MeCD. A monomer‐starved semicontinuous emulsion polymerization procedure was essential to favor the CD‐mediated incorporation of FMA into the copolymer structure and to achieve a stable colloidal dispersion even in the presence of small amounts of mixed anionic–nonionic surfactants. The thermal and surface properties of the latex films showed a good correlation with the shell composition and patchy nanostructured morphology of the particles. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   
10.
We study the mechanism of van der Waals(vdW)interactions on phonon transport in atomic scale,which would boost developments in heat management and energy conversion.Commonly,the vdW interactions are regarded as a hindrance in phonon transport.Here we propose that the vdW confinement can enhance phonon transport.Through molecular dynamics simulations,it is realized that the vdW confinement is able to make more than two-fold enhancement on thermal conductivity of both polyethylene single chain and graphene nanoribbon.The quantitative analyses of morphology,local vdW potential energy and dynamical properties are carried out to reveal the underlying physical mechanism.It is found that the confined vdW potential barriers reduce the atomic thermal displacement magnitudes,leading to less phonon scattering and facilitating thermal transport.Our study offers a new strategy to modulate the phonon transport.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号