首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   3篇
力学   1篇
  2019年   1篇
  2011年   1篇
  2007年   2篇
排序方式: 共有4条查询结果,搜索用时 5 毫秒
1
1.
Polymer-surfactant mixtures are increasingly being used in a wide range of applications. Weakly interacting systems, such as SDS/PEO and SDS/PVP, comprise ionic surfactants and neutral polymers, while strongly interacting systems, such as SDS/POLYDMDAAC and C12TAB/NaPSS, comprise ionic surfactants and oppositely charged ionic polymers. The complex nature of interactions in the mixtures leads to interesting and surprising surface tension profiles as the concentrations of polymer and surfactant are varied. The purpose of our research has been to develop a model to explain these surface tension profiles and to understand how they relate to the formation of different complexes in the bulk solution. In this paper we show how an existing model based on the law of mass action can be extended to model the surface tension of weakly interacting systems, and we also extend it further to produce a model for the surface tension of strongly interacting systems. Applying the model to a variety of strongly interacting systems gives remarkable agreement with the experimental results. The model provides a sound theoretical basis for comparing and contrasting the behavior of different systems and greatly enhances our understanding of the features observed.  相似文献   
2.
We investigate the breakdown of a system of micellar aggregates in a surfactant solution following an order-one dilution. We derive a mathematical model based on the Becker-D?ring system of equations, using realistic expressions for the reaction constants fit to results from Molecular Dynamics simulations. We exploit the largeness of typical aggregation numbers to derive a continuum model, substituting a large system of ordinary differential equations for a partial differential equation in two independent variables: time and aggregate size. Numerical solutions demonstrate that re-equilibration occurs in two distinct stages over well-separated timescales, in agreement with experiment and with previous theories. We conclude by exposing a limitation in the Becker-D?ring theory for re-equilibration of surfactant solutions.  相似文献   
3.

Experimental evidence shows that injecting low-salinity water during the oil recovery process can lead to an increase in the amount of oil recovered. Numerous mechanisms have been proposed to explain this effect, and, in recent years, two which have gained notable support are multicomponent ionic exchange (MIE) and pH increase. Both mechanisms involve ion exchange reactions within the thin film of water separating the oil in a reservoir from the clay minerals on the surface of the reservoir rock. Since the reactions occur on the molecular scale, an upscaled model is required in order to accurately determine the dominant mechanism using centimetre-scale experiments. In this paper, we develop the first stages of this upscaling process by modelling the pore-scale motion of an oil slug through a clay pore throat. We use a law-of-mass-action approach to model the exchange reactions occurring on the oil–water and clay–water interfaces in order to derive expressions for the surface charges as functions of the salinity. By balancing the disjoining pressure in the water film with the capillary pressure across the oil–water interface, we derive an expression for the salinity-dependent film thickness. We compare the two mechanisms by modifying an existing model for the velocity of an oil slug through a pore throat. Numerical results show that the velocity increases as the salinity decreases. The percentage increase is larger for the MIE mechanism, suggesting that MIE may be the dominant causal mechanism; however, this will vary depending on the particular clay and oil being studied.

  相似文献   
4.
The effect of alkyl chain length and electrolyte on the adsorption of sodium alkyl sulfate surfactants and the oppositely charged polyelectrolyte, polyDMDAAC, at the air-water interface has been investigated by surface tension and neutron reflectivity. The variations in the patterns of adsorption and surface tension behavior with alkyl chain length and electrolyte are discussed in the context of the competition between the formation of surface active surfactant/polyelectrolyte complexes and polyelectrolyte/surfactant micelle complexes in solution. A theoretical approach based on the law of mass action has been used to predict the surface effects arising from the competition between the formation of polyelectrolyte/surfactant surface and solution complexes and the formation of free surfactant micelles. This relatively straightforward model is shown to reproduce the principal features of the experimental results.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号