首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   1篇
化学   15篇
力学   6篇
物理学   13篇
  2024年   1篇
  2021年   4篇
  2019年   1篇
  2015年   2篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2002年   2篇
  1999年   2篇
  1998年   1篇
  1991年   1篇
排序方式: 共有34条查询结果,搜索用时 425 毫秒
1.
We have performed a comparison of ten models that predict the temporal behavior of laser-induced incandescence (LII) of soot. In this paper we present a summary of the models and comparisons of calculated temperatures, diameters, signals, and energy-balance terms. The models were run assuming laser heating at 532 nm at fluences of 0.05 and 0.70 J/cm2 with a laser temporal profile provided. Calculations were performed for a single primary particle with a diameter of 30 nm at an ambient temperature of 1800 K and a pressure of 1 bar. Preliminary calculations were performed with a fully constrained model. The comparison of unconstrained models demonstrates a wide spread in calculated LII signals. Many of the differences can be attributed to the values of a few important parameters, such as the refractive-index function E(m) and thermal and mass accommodation coefficients. Constraining these parameters brings most of the models into much better agreement with each other, particularly for the low-fluence case. Agreement among models is not as good for the high-fluence case, even when selected parameters are constrained. The reason for greater variability in model results at high fluence appears to be related to solution approaches to mass and heat loss by sublimation. PACS 65.80.+n; 78.20.Nv; 42.62.-b; 44.05.+e  相似文献   
2.
Understanding and characterizing ignition of flammable mixtures by hot particles is important for assessing and reducing the risk of accidental ignition and explosion in industry and aviation. Recently, many studies have been conducted for ignition of gaseous mixtures by hot particles. However, the effects of low-temperature chemistry (LTC) on ignition by hot particles received little attention. LTC plays an important role in the ignition of most hydrocarbon fuels and may induce cool flames. The present study aims to numerically assess the effects of LTC on ignition by the hot particles. We consider the transient ignition processes induced by a hot spherical particle in quiescent and flowing stoichiometric dimethyl ether/air mixtures. 1D and 2D simulations, respectively, are conducted for the ignition process by hot-particles in quiescent and flowing mixtures. A detailed kinetic model including both LTC and high-temperature chemistry (HTC) is used in simulations. The results exhibit a premixed cool flame to be first initiated by the hot particle. Then a double-flame structure with both premixed cool and hot flames is observed at certain conditions. At zero or low inlet flow velocities, the hot flame catches up and merges with the leading cool flame. At high inlet flow velocities, the hot flame cannot be initiated due to the short residence time and large convective loss of heat and radicals. Comparing the results with and without considering LTC confirms that LTC accelerates substantially ignition via HTC in a certain range of hot particle temperatures. The mechanism of ignition promotion by LTC is interpreted by analyzing the radical pool produced by the LTC and HTC surrounding the hot particle. Moreover, the influence of inlet flow velocity on ignition by hot particles is assessed. Non-monotonic change of ignition delay time with flow velocity is observed and discussed.  相似文献   
3.
Flow, Turbulence and Combustion - The article Quasi-DNS Dataset of a Piloted Flame with Inhomogeneous Inlet Conditions written by Thorsten Zirwes, Feichi Zhang, Peter Habisreuther, Maximilian...  相似文献   
4.
Time-resolved LII (TIRE-LII) measurements are performed simultaneously at two different wavelengths in a sooting, premixed, flat acetylene flame under atmospheric pressure conditions. The influence of temporal response of the detection system on the measured evolution of the LII signal is discussed. The effect of the temporal response on the determination of particle size distributions is quantified for data evaluation starting some nanoseconds after the maximum particle ensemble temperature. Furthermore, it is investigated how the temporal response of a slow detection system affects the determination of accommodation parameters, e.g. thermal accommodation coefficients, and evaporation coefficients, if TIRE-LII signals are modelled including particle heating as well as particle cooling, and if deconvolution techniques are not applied to the measured LII signal. PACS 85.60.Gz  相似文献   
5.
For chemical recycling of plastic refuses a cascade of cycled-spheres reactors has been developed combining separation and decomposition of polymer mixtures by stepwise pyrolysis at moderate temperatures. In low-temperature pyrolysis, mixtures of poly(vinyl chloride), polystyrene and polyethylene or polystyrene, polyamide 6 and polyethylene have been separated into hydrogen chloride, styrene and polyamide 6 and aliphatic compounds from polyethylene decomposition. Compared with the low-temperature pyrolysis of the single components, some interactions between the polymers are found when pyrolyzing mixtures. Some mechanistic aspects of these interactions are discussed.  相似文献   
6.
The present work describes the imaging of laser induced fluorescence (LIF) of formaldehyde in a high pressure/high temperature atmosphere. Gaseous dimethyl ether (DME) is injected at 70 bar into the combustion chamber. Formaldehyde is detected by its fluorescence from excitation using the third harmonic of a Nd:YAG-laser with a wavelength of 355?nm at chamber pressures of 20, 30 and 40 bar. The experimental results are compared to 1D flamelet simulation of the auto-ignition processes applying a detailed reaction mechanism for DME. The results reveal a very good accordance to the experimental findings.  相似文献   
7.
There are two values, -26.0 and -27.7 kcal mol(-1), that are routinely reported in literature evaluations for the standard enthalpy of formation, Delta(f) H(o)(298), of formaldehyde (CH(2)=O), where error limits are less than the difference in values. In this study, we summarize the reported literature for formaldehyde enthalpy values based on evaluated measurements and on computational studies. Using experimental reaction enthalpies for a series of reactions involving formaldehyde, in conjunction with known enthalpies of formation, its enthalpy is determined to be -26.05+/-0.42 kcal mol(-1), which we believe is the most accurate enthalpy currently available. For the same reaction series, the reaction enthalpies are evaluated using six computational methods: CBS-Q, CBS-Q//B3, CBS-APNO, G2, G3, and G3B3 yield Delta(f) H(o)(298)=-25.90+/-1.17 kcal mol(-1), which is in good agreement to our experimentally derived result. Furthermore, the computational chemistry methods G3, G3MP2B3, CCSD/6-311+G(2df,p)//B3LYP/6-31G(d), CCSD(T)/6-311+G(2df,p)//B3LYP/6-31G(d), and CBS-APNO in conjunction with isodesmic and homodesmic reactions are used to determine Delta(f) H(o)(298). Results from a series of five work reactions at the higher levels of calculation are -26.30+/-0.39 kcal mol(-1) with G3, -26.45+/-0.38 kcal mol(-1) with G3MP2B3, -26.09+/-0.37 kcal mol(-1) with CBS-APNO, -26.19+/-0.48 kcal mol(-1) with CCSD, and -26.16+/-0.58 kcal mol(-1) with CCSD(T). Results from heat of atomization calculations using seven accurate ab initio methods yields an enthalpy value of -26.82+/-0.99 kcal mol(-1). The results using isodesmic reactions are found to give enthalpies more accurate than both other computational approaches and are of similar accuracy to atomization enthalpy calculations derived from computationally intensive W1 and CBS-APNO methods. Overall, our most accurate calculations provide an enthalpy of formation in the range of -26.2 to -26.7 kcal mol(-1), which is within computational error of the suggested experimental value. The relative merits of each of the three computational methods are discussed and depend upon the accuracy of experimental enthalpies of formation required in the calculations and the importance of systematic computational errors in the work reaction. Our results also calculate Delta(f) H(o)(298) for the formyl anion (HCO(-)) as 1.28+/-0.43 kcal mol(-1).  相似文献   
8.
The major reaction path for oxidation of di‐tert‐butyl peroxide (DTBP) is generally considered to occur via fission of the weak peroxide RO? OR bond at temperatures above 393 K. The initial stable intermediates in the thermal decomposition or combustion of DTBP are acetone and ethane, and the overall reaction is accompanied by an important heat release which when mixed with air (oxygen) may exceed the self‐ignition temperatures. A kinetic study on plausible DTBP reaction paths was initiated in this work, and a detailed study of the thermochemistry of new intermediates, transition state structures, and products is reported. The density functional theory (DFT; B3LYP/6‐311g(d,p)), which is practical for large compounds along with the composite ab initio G3MP2B3 and G3 calculations, (when possible), are used. Computational chemistry results from DFT and ab initio calculations are coupled with isodesmic reaction analysis which, as demonstrated in previous studies, results in good accuracy. Over 10 unimolecular decomposition pathways are identified and reported.  相似文献   
9.
The most common and reliable technique used for flame stabilization of industrial combustors with high thermal loads is the application of strongly swirling flows. In addition to stabilization, swirl flames offer the possibility to influence emission characteristics by simply changing the swirl intensity or the type of swirl generation. Despite of these major advantages, swirling flows tend to evolve flow instabilities, that considerably constitute a significant source of noise. In general, noise generation is substantially enhanced, when such a swirling flow is employed for flames. Thus, the minimization of the resulting noise emissions under conservation of the benefit of high ignition stability is one major design challenge for the development of modern swirl stabilized combustion devices. The present investigation makes an attempt to determine mechanisms and processes to influence the noise generation of flames with underlying swirling flows. Therefore, a new burner has been designed, that offers the possibility to vary geometrical parameters as well as the type of swirl generation, typically applied in industrial devices. Experimental data has been acquired for the isothermal flow as well as swirl flames by means of 3-D-LDV-diagnostics comprising the components of long-time averaged mean and rms-velocities as well as spectrally resolved velocity fluctuations for all components. The noise emission data was acquired with microphone probes resulting in sound pressure levels outside the zone of the perceptible fluid flow. Along to the experiments, numerical simulations using RANS and LES have been carried out for isothermal cases with different burner outlet geometries. The results of the measurements show a distinct rise of the sound pressure level, obtained by changing both the test setup from the isothermal into the flame configuration as well as the geometrical parameters. This is also resembled by the LES simulation results. Furthermore, a physical model has been developed from experiments and verified by the LES simulation, that explains the formation of coherent flow structures and allows to separate their contribution to the overall noise emission from ordinary turbulent noise sources.  相似文献   
10.
Phenyl radicals are formed in combustion and oxidation systems by abstraction of the phenyl—hydrogen from benzene or aromatics by active radical species and by oxidation and thermal reactions of the benzylic carbon on alkyl‐substituted aromatics. The reaction of phenyl with O2 leads to chain‐branching reactions and a number of unsaturated oxygenated hydrocarbon intermediates that may need to be included in detailed combustion models. Thermochemical parameters and structures on important species resulting from the phenyl radical + O2 association and reaction are reported in this study. Enthalpies, Δf H, of a series of stable molecules, radicals, and transition state structures are calculated using ab initio (G3MP2B3 and G3) and density functional (DFT, B3LYP/6–311g(d,p) calculations, group additivity (GA), and literature data. The ab initio and density functional calculations are combined with isodesmic reaction analysis, whenever possible, to improve the accuracy of the enthalpy values. Entropies, S, and heat capacities, Cpf298 (T), are calculated using density functional calculations, group additivity, and literature data. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 583–604, 2008  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号