首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
化学   4篇
力学   2篇
  2020年   1篇
  2018年   2篇
  2013年   2篇
  2012年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
A method for the trace determination of cadmium ions in water, human urine and human blood serum samples using ultrasonic‐assisted dispersive micro‐solid‐phase extraction (UA‐D‐μSPE) was developed. Silica‐coated magnetic nanoparticles were coated with polythiophene, and the resulting sorbent was characterized using thermogravimetry, differential thermal analysis, scanning electron microscopy, Fourier transform infrared spectrometry and X‐ray diffraction. Following UA‐D‐μSPE, cadmium ions were quantified using graphite furnace atomic absorption spectrometry. A Box–Behnken design was used for optimization of important sorption and desorption parameters in UA‐D‐μSPE: in the sorption step, pH of solution, sorption amount and sonication time for sorption; in the desorption step, concentration of eluent, volume of eluent and sonication time. The optimum conditions for the method were: pH of solution, 7.5; sonication time for sorption, 3 min; sorption amount, 35 mg; type and concentration of eluent, HCl and 1.1 mol l?1; volume of eluent, 360 μl; sonication time for desorption, 110 s. Under the optimized conditions the limit of detection and relative standard deviation for the detection of cadmium ions by UA‐D‐μSPE were found to be 0.8 ng l?1 and <6%, respectively.  相似文献   
2.
The polythiophene nanoparticles (nano-PT) were prepared with average diameter of 20–35 nm. The nanostructurals of polythiophene were confirmed by TEM and SEM analyzes. The kinetics of the thermal degradation and thermal oxidative degradation of nano-PT were investigated by thermogravimetric analysis. Kissinger method, Flynn–Wall–Ozawa method, and advanced isoconversional method have been used to determine the activation energies of nano-PT degradation. The results showed that the thermal stability of nano-PT in pure N2 is higher than that in air atmosphere. The analyzes of the solid-state processes mechanism of nano-PT by Criado et al. method showed: the thermal degradation process of nano-PT goes to a mechanism involving second-order (F 2 mechanism); otherwise, the thermo-oxidative degradation process of nano-PT is corresponding to a phase boundary controlled reaction mechanism (R 2 mechanism).  相似文献   
3.
Polythiophene nanoparticles as a conductive filler was prepared with average diameter of 20-35 nm and its molecular structure was confirmed by the FT-IR, TEM, XRD and UV-vis analysis. A new conductive epoxy nanocomposite was synthesized by curing of diglycidyl ether of bisphenol A/4,4′-(4,4′ Isopropylidenediphenoxy) bis (Phthalic Anhydride) involving various percentages of polythiophene nanoparticles. DSC and DMTA studies revealed that low percentage of the polythiophene nanoparticles, i.e. 1%, results in improved crosslink density as evidenced by increasing in the glass transition temperature. The addition of polythiophene nanoparticles into the epoxy matrix resulted in a significant increment in the electrical conductivity, mechanical properties, thermal stability and activation energy of thermal degradation. The advanced isoconversional method is utilized to describe the curing behavior and thermal degradation process of the neat epoxy and epoxy nanocomposite. We have utilized the Coats-Redfern and Criado methods to find the solid state thermal degradation reaction mechanism. For the nanocomposite, the mechanism was recognized to be two-dimensional diffusion (D2) reaction and it changes to a nucleation and growth (A4) for pure epoxy system.  相似文献   
4.
Structural Chemistry - Corrections are needed to the original publication of this article. The author’s affiliations were incorrectly assigned during submission. The authors apologize for the...  相似文献   
5.
A developing thermal front is set up by suddenly imposing a constant heat flux on the lower horizontal boundary of a semi-infinite fluid-saturated porous domain. The critical time for the onset of convection is determined using two main forms of analysis. The first of these is an approximate method which is effectively a frozen-time model while the second implements a set of parabolic simulations of monochromatic disturbances placed in the boundary layer at an early time. Results from the two approaches are compared and it is found that instability only occurs when the nondimensional disturbance wavenumber, $k$ k , is less than unity. The neutral curve for the primary mode possesses a vertical asymptote at $k=1$ k = 1 in wavenumber/time parameter space which is in contrast to the more usual teardrop shape which occurs when the surface is subject to a constant temperature. Asymptotic analyses are performed for the frozen-time model which yield excellent predictions for both branches of the neutral curve and the locus of the maximum growth rate curve at late times.  相似文献   
6.
Tolerance analysis of mechanical components and assemblies is a key element in the industry for improving product quality and reducing overall cost. This paper is an attempt to propose a methodology to formulate and compute the kinematic assembly variations with respect to the critical dimensions (joint clearances) by calculating the homogeneous matrix of loops with considering the transforming and rotation matrix, the tolerance sensitivities, the geometrical responses to assembly variations, and the tolerance sensitivity of mechanism for clearance in the joints in different motion phases. The analysis is performed by the systematic methodology which is extended for kinematic sensitivity and positional error analysis with published results.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号