首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
力学   5篇
数学   3篇
物理学   2篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Smoothed Wigner transforms have been used in signal processing, as a regularized version of the Wigner transform, and have been proposed as an alternative to it in the homogenization and/or semiclassical limits of wave equations.We derive explicit, closed formulations for the coarse-scale representation of the action of pseudodifferential operators. The resulting “smoothed operators” are in general of infinite order. The formulation of an appropriate framework, resembling the Gelfand–Shilov spaces, is necessary.Similarly we treat the “smoothed Wigner calculus”. In particular this allows us to reformulate any linear equation, as well as certain nonlinear ones (e.g., Hartree and cubic nonlinear Schrödinger), as coarse-scale phase-space equations (e.g., smoothed Vlasov), with spatial and spectral resolutions controlled by two free parameters. Finally, it is seen that the smoothed Wigner calculus can be approximated, uniformly on phase-space, by differential operators in the semiclassical regime. This improves the respective weak-topology approximation result for the Wigner calculus.  相似文献   
2.
The dispersion characteristics of a selection of non-evaporating non-reacting, evaporating non-reacting, and reacting dilute spray jets issuing in ambient air (Gounder et al, Combust Sci Technol 182:702–715, 2010; Masri and Gounder, Combust Flame 159:3372–3397, 2010) and in a hot coflow (Oloughlin and Masri, Flow Turbul Combust 89:13–35, 2012) are analysed. Other than the cases found in those contributions, two additional sprays of kerosene have been investigated in order to systematically study the effects of evaporation. The burners are well designed such that boundary conditions may be accurately measured for use in numerical simulations. The dynamics and dispersion characteristics are analysed by conditioning results on the droplet Stokes numbers and by systematically investigating changes in dispersion and dynamics as a function of carrier air velocity, liquid loading, ignition method, and location within the flame or spray jet. The tendency for droplet dispersion defined by the ratio of radial rms velocity to axial mean velocity varies significantly between reacting and non-reacting flows. However, dispersion is found to be largely unaffected by evaporation. The total particle concentration, or number density of droplets within the spray has also been used as a direct measure of spray dispersion with the effect of evaporation on a turbulent polydisperse spray being isolated by investigating acetone and kerosene sprays with similar boundary conditions. The rate of change of droplet size with radial position is almost identical for the kerosene and acetone cases. The dispersion characteristics, closely related to the ‘fan spreading’ phenomenon are dependant on the carrier air velocity and axial location within the spray.  相似文献   
3.
Flame propagation in a lifted flame subjected to a transient velocity pulse is investigated using high-speed OH-LIF and Large Eddy Simulation (LES). The design of the burner, taking the requirements of the simulations into consideration, comprises an attached and lifted CNG jet flame in a mild air co-flow, forced to transition by a controlled mass flow pulse of fuel. The high-speed images taken at 5 kHz show a rapid lifting of the flames upon pulsation before the flame base propagates back towards the nozzle. The resulting steady state position differed from the initial lift-off position, consistent with the previously observed hysteresis concept. Calculations using LES along with detailed chemistry are shown to capture the basic features observed in the experiment.  相似文献   
4.
An automotive fuel injector has been retrofitted with novel electrostatic components in order to improve the primary atomization and dispersion characteristics of the device. A specific design variant is presented and discussed outlining how a conventional fuel injector may be modified to house electrostatic components. With 2 bar gauge injection pressure and an electrical power of 2 mW, the injector can successfully supply intermittently charged fuel, containing spray specific charge levels up to ~1.4 C/m3. Root mean square (RMS) spray specific charge and RMS total current vs. voltage curves are presented as a function of voltage pulse and solenoid valve frequencies for both low and high flow-rate operation. The fuel injector was able to operate in a stable manner at pulse train frequencies up to 20 Hz and the charge injection mechanism was identical to previous steady voltage and pulsed voltage steady flow systems. An optimal synchronization between the high voltage (HV) pulse frequency and solenoid valve frequency has been determined, allowing for the prevention of electrical breakdown events within the inter-electrode gap over a negative voltage ranging from 0 to 4.5 kV.  相似文献   
5.
We consider the classical limit of the quantum evolution, with some rough potential, of wave packets concentrated near singular trajectories of the underlying dynamics. We prove that under appropriate conditions, even in the case of BV vector fields, the correct classical limit can be selected.  相似文献   
6.
The Wigner transform (WT) has been extensively used in the formulation of phase-space models for a variety of wave propagation problems including high-frequency limits, nonlinear and random waves. It is well known that the WT features counterintuitive ‘interference terms,’ which often make computation impractical. In this connection, we propose the use of the smoothed Wigner transform (SWT), and derive new, exact equations for it, covering a broad class of wave propagation problems. Equations for spectrograms are included as a special case. The ‘taming’ of the interference terms by the SWT is illustrated, and an asymptotic model for the Schrödinger equation is constructed and numerically verified.  相似文献   
7.
In this paper we consider the nonlinear Hartree equation in presence of a given external potential, for an initial coherent state. Under suitable smoothness assumptions, we approximate the solution in terms of a time dependent coherent state, whose phase and amplitude can be determined by a classical flow. The error can be estimated in L 2 by C ?{e}{C \sqrt {\varepsilon}} , e{\varepsilon} being the Planck constant. Finally we present a full formal asymptotic expansion.  相似文献   
8.
Charge injection atomizers are energy efficient devices that can be used in order to promote the atomization of dielectric liquids, and a potential application of such devices is fine spray delivery in small internal combustion engines. The operation of a pulsed charge injection atomization system operating at practical engine frequencies under a high voltage pulse train has not been well recorded in the literature. This initial investigation defines the electrical and transient global atomization performance of a charge injection atomizer operating under a steady flow regime, but with a typical high voltage pulse train. Results show that voltage-current characteristics follow similar trends to that of a steady flow, steady voltage system, and observation of the data also reveals that output current waveforms depend on the input pulse train frequency. No degradation in charging efficiency was observed at higher frequencies, which suggests that a charge injection atomizer can operate efficiently at practical engine speeds. Photographs also confirmed the high voltage pulse train injects charge that produces sections of primary atomization on the continuous liquid jet.  相似文献   
9.
The electrical and atomization performance of a plane?Cplane charge injection atomizer using a dielectric liquid, and operating at pump pressures ranging from 15 to 35?bar corresponding to injection velocities of up to 50?m/s, is explored via low current electrical measurements, spray imaging and phase Doppler anemometry. The work is aimed at understanding the contribution of electrostatic charging relevant to typical higher pressure fuel injection systems such as those employed in the aeronautical, automotive and marine sectors. Results show that mean-specific charge increases with injection velocity significantly. The effect of electrostatic charge is advantageous at the 15?C35?bar range, and an arithmetic mean diameter D 10 as low as 0.2d is achievable in the spray core and lower still in the periphery where d is the orifice diameter. Using the data available from this higher pressure system and from previous high Reynolds number systems (Shrimpton and Yule Exp Fluids 26:460?C469, 1999), the promotion of primary atomization has been analysed by examining the effect that charge has on liquid jet surface and liquid jet bulk instability. The results suggest that for the low charge density Q v?~?2?C/m3 cases under consideration here, a significant increase in primary atomization is observed due to a combination of electrical and aerodynamic forces acting on the jet surface, attributed to the significantly higher jet Weber number (We j) when compared to low injection pressure cases. Analysis of Sauter mean diameter results shows that for jets with elevated specific charge density of the order Q v?~?6?C/m3, the jet creates droplets that a conventional turbulent jet would, but with a significantly lower power requirement. This suggests that ??turbulent?? primary atomization, the turbulence being induced by electrical forces, may be achieved under injection pressures that would produce laminar jets.  相似文献   
10.
The effects of grid-generated velocity fluctuations on the primary atomization and subsequent droplet deformation of a range of laminar liquid jets are examined using microscopic high-speed backlit imaging of the break-up zone and laser Doppler anemometry of the gas phase separately. This is done for fixed gas mean flow conditions in a miniature wind tunnel experiment utilizing a selection of fuels, turbulence-generating grids and two syringe sizes. The constant mean flow allows for an isolated study of velocity fluctuation effects on primary atomization in a close approximation to homogeneous decaying turbulence. The qualitative morphology of the primary break-up region is examined over a range of turbulence intensities, and spectral analysis is performed in order to ascertain the break-up frequency which, for a case of no grid, compares well with the existing literature. The addition of velocity fluctuations tends to randomize the break-up process. Slightly downstream of the break-up region, image processing is conducted in order to extract a number of metrics, which do not depend on droplet sphericity, and these include droplet aspect ratio and orientation, the latter quantity being somewhat unconventional in spray characterization. A turbulent Weber number $We^{\prime}$ which takes into account gas phase fluctuations is utilized to characterize the resulting droplet shapes, in addition to a mean Weber number <We d>. Above a $We^{\prime}>0.05$ a clear positive relationship exists between the mean aspect ratio of droplets and the turbulent Weber number where $We^{\prime}$ is varied by altering all relevant variables including the velocity root mean square, the initial droplet diameter, the surface tension and the density.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号