首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
力学   8篇
物理学   2篇
  2020年   1篇
  2018年   1篇
  2013年   1篇
  2012年   3篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
This paper proposes an extension of the SHB8PS solid–shell finite element to large strain anisotropic elasto-plasticity, with application to several non-linear benchmark tests including sheet metal forming simulations. This hexahedral linear element has an arbitrary number of integration points distributed along a single line, defining the “thickness” direction; and to control the hourglass modes inherent to this reduced integration, a physical stabilization technique is used. In addition, the assumed strain method is adopted for the elimination of locking. The implementation of the element in Abaqus/Standard via the UEL user subroutine has been assessed through a variety of benchmark problems involving geometric non-linearities, anisotropic plasticity, large deformation and contact. Initially designed for the efficient simulation of elastic–plastic thin structures, the SHB8PS exhibits interesting potentialities for sheet metal forming applications—both in terms of efficiency and accuracy. The element shows good performance on the selected tests, including springback and earing predictions for Numisheet benchmark problems.  相似文献   
2.
Sheet metal forming processes often involve complex loading sequences. To improve the prediction of some undesirable phenomena, such as springback, physical behavior models should be considered. This paper investigates springback behavior predicted by advanced elastoplastic hardening models which combine isotropic and kinematic hardening and take strain-path changes into account. A dislocation-based microstructural hardening model formulated from physical observations and the more classical cyclic model of Chaboche have been considered in this work. Numerical implementation was carried out in the ABAQUS software using a return mapping algorithm with a combined backward Euler and semi-analytical integration scheme of the constitutive equations. The capability of each model to reproduce transient hardening phenomena at abrupt strain-path changes has been shown via simulations of sequential rheological tests. A springback analysis of strip drawing tests was performed in order to emphasize the impact of several influential parameters, namely: process, numerical and behavior parameters. The effect of the two hardening models with respect to the process parameters has been specifically highlighted.  相似文献   
3.
The wall shear stress and the vortex dynamics in a circular impinging jet are investigated experimentally for Re = 1,260 and 2,450. The wall shear stress is obtained at different radial locations from the stagnation point using the polarographic method. The velocity field is given from the time resolved particle image velocimetry (TR‐PIV) technique in both the free jet region and near the wall in the impinging region. The distribution of the momentum thickness is also inspected from the jet exit toward the impinged wall. It is found that the wall shear stress is correlated with the large-scale vortex passing. Both the primary vortices and the secondary structures strongly affect the variation of the wall shear stress. The maximum mean wall shear stress is obtained just upstream from the secondary vortex generation where the primary structures impinge the wall. Spectral analysis and cross-correlations between the wall shear stress fluctuations show that the vortex passing influences the wall shear stress at different locations simultaneously. Analysis of cross-correlations between temporal fluctuations of the wall shear stress and the transverse vorticity brings out the role of different vortical structures on the wall shear stress distribution for the two Reynolds numbers.  相似文献   
4.
Sheet metal forming processes generally involve large deformations together with complex loading sequences. In order to improve numerical simulation predictions of sheet part forming, physically-based constitutive models are often required. The main objective of this paper is to analyze the strain localization phenomenon during the plastic deformation of sheet metals in the context of such advanced constitutive models. Most often, an accurate prediction of localization requires damage to be considered in the finite element simulation. For this purpose, an advanced, anisotropic elastic–plastic model, formulated within the large strain framework and taking strain-path changes into account, has been coupled with an isotropic damage model. This coupling is carried out within the framework of continuum damage mechanics. In order to detect the strain localization during sheet metal forming, Rice’s localization criterion has been considered, thus predicting the limit strains at the occurrence of shear bands as well as their orientation. The coupled elastic–plastic-damage model has been implemented in Abaqus/implicit. The application of the model to the prediction of Forming Limit Diagrams (FLDs) provided results that are consistent with the literature and emphasized the impact of the hardening model on the strain-path dependency of the FLD. The fully three-dimensional formulation adopted in the numerical development allowed for some new results – e.g. the out-of-plane orientation of the normal to the localization band, as well as more realistic values for its in-plane orientation.  相似文献   
5.
In OFDM systems, the Inter-Symbol Interference (ISI) and the Inter-Block Interference (IBI) are mitigated by using Null-Tones (NTs) and the Guard Interval (GI) redundancy of length higher than the channel size. To preserve a high bit rate, channel shortening is required to reduce the GI length. We propose here a new adaptive method for the blind estimation of the Time domain EQualizer (TEQ) for time varying communication channels. Our contribution is three-fold. First, we exploit the knowledge of the first emitted symbol in a differential encoded OFDM system to derive the initial estimate of the TEQ. Then, we update the TEQ coefficients according to the channel variation by optimizing a criterion exploiting both the GI and NT redundancies and using a fast Generalized Eigen Value (GEV) tracking algorithm. Finally, the optimization of the previous criterion is achieved in such a way we control the Target Impulse Response (TIR) quality and we improve the overall system performance. Simulation results are provided to illustrate the performance of our method and assess our theoretical derivations.  相似文献   
6.
In the present paper, an efficient numerical tool is developed to investigate the ductility limit of polycrystalline aggregates under in-plane biaxial loading. These aggregates are assumed to be representative of very thin sheet metals (with typically few grains through the thickness). Therefore, the plane-stress assumption is naturally adopted to numerically predict the occurrence of strain localization. Furthermore, the initial crystallographic texture is assumed to be planar. Considering the latter assumptions, a two-dimensional single-crystal model is advantageously chosen to describe the mechanical behavior at the microscopic scale. The mechanical behavior of the planar polycrystalline aggregate is derived from that of single crystals by using the full-constraint Taylor scale-transition scheme. To predict the occurrence of localized necking, the developed multiscale model is coupled with bifurcation theory. As will be demonstrated through various numerical results, in the case of biaxial loading under plane-stress conditions, the planar single-crystal model provides the same predictions as those given by the more commonly used three-dimensional single-crystal model. Moreover, the use of the two-dimensional model instead of the three-dimensional one allows dividing the number of active slip systems by two and, hence, significantly reducing the CPU time required for the integration of the constitutive equations at the single-crystal scale. Furthermore, the planar polycrystal model seems to be more suitable to study the ductility of very thin sheet metals, as its use allows us to rigorously ensure the plane-stress state, which is not always the case when the fully three-dimensional polycrystalline model is employed. Consequently, the adoption of this planar formulation, instead of the three-dimensional one, allows us to simplify the computational aspects and, accordingly, to considerably reduce the CPU time required for the numerical predictions.  相似文献   
7.
Nasir  Muhammad Waqar  Chalal  Hocine  Abed-Meraim  Farid 《Meccanica》2020,55(9):1829-1845
Meccanica - The scientific literature has shown the strong effect of void size on material response. Several yield functions have been developed to incorporate the void size effects in ductile...  相似文献   
8.
In order to investigate the impact of microstructures and deformation mechanisms on the ductility of materials, the criterion first proposed by Rice is applied to elastic–plastic tangent moduli derived from a large strain micromechanical model combined with a self-consistent scale-transition technique. This approach takes into account several microstructural aspects for polycrystalline aggregates: initial and induced textures, dislocation densities as well as softening mechanisms such that the behavior during complex loading paths can be accurately described.  相似文献   
9.
A physically based elasto-visco-plastic constitutive model is presented and compared to experimental results for three different mild steels. The experiments consist of tensile tests ranging from quasi-static conditions up to strain rates of 103 s?1 as well as quasi-static simple and reverse shear tests at different amounts of pre-strain. Additional two-step sequential mechanical tests (Bauschinger and orthogonal effects) have been performed to further evaluate the ability of the model to describe strain-path changes at moderate/large strains. The model requires significantly fewer material parameters compared to other visco-plasticity models from the literature, while being able to describe some of the main features of the strain-rate sensitivity of mild steels. Accordingly, the parameter identification is simple and intuitive, requiring a relatively small set of experiments. The strain-rate sensitivity modeling is not restricted to a particular hardening law and thus provides a general framework in which advanced hardening equations can be adopted.  相似文献   
10.
In this paper, two methods for signal detection and time-delay estimation based on the cross Psi(B)-energy operator are proposed. These methods are well suited for mono-component AM-FM signals. The Psi(B) energy operator measures how much one signal is present in another one. The peak of the Psi(B) operator corresponds to the maximum of interaction between the two signals. Compared to the cross-correlation function, the Psi(B) operator includes temporal information and relative changes of the signal which are reflected in its first and second derivatives. The discrete version of the continuous-time form of the Psi(B) operator, which is used in its implementation, is presented. The methods are illustrated on synthetic and real signals and the results compared to those of the matched filter and the cross correlation. The real signals correspond to impulse responses of buried objects obtained by active sonar in iso-speed single path environments.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号