首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   2篇
力学   1篇
物理学   3篇
  2017年   1篇
  2016年   2篇
  2011年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
利用上升沿约0.5 s、半高宽约6 s、幅值可达40 kV的微秒脉冲电源和上升沿约150 ns、半高宽约300 ns、幅值可达50 kV的纳秒脉冲电源激励大气压弥散放电,并分别采用刀型和锯齿电极放电。通过电压电流测量和发光图像拍摄,改变施加电压种类、脉冲重复频率、高压电极结构和气隙距离等参数,研究了不同条件下弥散放电特性。实验结果表明:纳秒脉冲电源和微秒脉冲电源均能在大气压空气中激励大面积的弥散放电,弥散放电面积最大达90 cm2;放电的均匀性受脉冲参数与电极形状影响显著,其中刀型电极条件下纳秒脉冲激励的弥散放电均匀性最佳;相同条件下纳秒脉冲弥散放电的瞬时功率大于微秒脉冲弥散放电,最高可达275 kW,而纳秒脉冲弥散放电的能量小于微秒脉冲弥散放电;保持其他条件不变,弥散放电传导电流幅值随着气隙距离的增加而降低,放电强度随着脉冲重复频率的增加而增强,弥散放电的工作电压范围随着脉冲重复频率的增加显著降低。因此在低频、刀型电极结构中易于获得均匀与较大工作电压范围的大气压弥散放电。  相似文献   
2.
侯兴民  章程  邱锦涛  顾建伟  王瑞雪  邵涛 《物理学报》2017,66(10):105204-105204
纳秒脉冲放电能在大气压下产生高电子能量、高功率密度的低温等离子体,由于经典放电理论无法很好地解释纳秒脉冲放电中的现象,近年来以高能逃逸电子为基础的纳秒脉冲气体放电理论受到广泛关注.纳秒脉冲放电会产生高能逃逸电子,伴随产生X射线,研究X射线的特性可以间接反映高能逃逸电子的特性.本文利用纳秒脉冲电源在大气压下激励空气放电,通过金刚石光导探测器测量放电产生的X射线,研究不同电极间隙、阳极厚度下和空间不同位置测量的X射线特性.实验结果表明,在大气压下纳秒脉冲放电能产生上升沿约1 ns,脉宽约2 ns的X射线脉冲,其产生时间与纳秒脉冲电压峰值对应,经计算探测到的X射线能量约为2.3×10-3J.当增大电极间隙时,探测到的X射线能量减弱,因为增大电极间隙会减小电场强度和逃逸电子数,从而减少阳极的轫致辐射.电极间距大于50 mm后加速减弱,同时放电模式从弥散过渡到电晕.随着阳极厚度增加,阳极后方和放电腔侧面观察窗测得的X射线能量均有所减弱,在阳极后面探测的X射线能量减弱趋势更加明显,这说明X射线主要产生在阳极内表面,因此增加阳极厚度会使穿透阳极薄膜的X射线能量减少.  相似文献   
3.
山东省结构设计竞赛一等奖模型设计分析   总被引:1,自引:0,他引:1  
以山东省高校第三届结构设计大赛获奖作品为模型, 介绍了从模型、加载装置设计、加工、分析及静动加载的全过程, 最后通过理论分析, 验证了结构的强度及稳定性. 设计大赛对开拓大学生的视野, 拓宽大学生创新平台, 引领大学生创新实践思维助益良多, 值得推广.  相似文献   
4.
利用上升沿约0.5 s、半高宽约6 s、幅值可达40 kV的微秒脉冲电源和上升沿约150 ns、半高宽约300 ns、幅值可达50 kV的纳秒脉冲电源激励大气压弥散放电,并分别采用刀型和锯齿电极放电。通过电压电流测量和发光图像拍摄,改变施加电压种类、脉冲重复频率、高压电极结构和气隙距离等参数,研究了不同条件下弥散放电特性。实验结果表明:纳秒脉冲电源和微秒脉冲电源均能在大气压空气中激励大面积的弥散放电,弥散放电面积最大达90 cm2;放电的均匀性受脉冲参数与电极形状影响显著,其中刀型电极条件下纳秒脉冲激励的弥散放电均匀性最佳;相同条件下纳秒脉冲弥散放电的瞬时功率大于微秒脉冲弥散放电,最高可达275 kW,而纳秒脉冲弥散放电的能量小于微秒脉冲弥散放电;保持其他条件不变,弥散放电传导电流幅值随着气隙距离的增加而降低,放电强度随着脉冲重复频率的增加而增强,弥散放电的工作电压范围随着脉冲重复频率的增加显著降低。因此在低频、刀型电极结构中易于获得均匀与较大工作电压范围的大气压弥散放电。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号