首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
化学   4篇
晶体学   1篇
物理学   2篇
  2016年   1篇
  2015年   1篇
  2012年   1篇
  2010年   2篇
  2008年   1篇
  2006年   1篇
排序方式: 共有7条查询结果,搜索用时 78 毫秒
1
1.

The influence of the size of Y2O3 powder particles on the structure formation and densification of Nd3+:Y3Al5O12 laser ceramics has been studied. It is shown that the use of 50- and 100-nm yttrium oxide particles makes it possible to synthesize single-phase yttrium aluminum garnet at temperatures of 1200 and 1500°C, respectively, whereas in the case of 5000-nm yttrium oxide particles 2-h exposure at a temperature of 1500°C yields only 80 wt % of the Nd3+:Y3Al5O12 phase. Bulk swelling of pressed samples during sintering of 2.94Y2O3-0.06Nd2O3-5Al2O3 powders with the size ratio of the initial particles R(Al2O3/Y2O3) ~ 5 is observed. The application of different-sized powders (R ~ 2.5) provides quantitative ratios between phases in the 3Y2O3-5Al2O3 system at which shrinkage in a temperature range of 20–1500°C is dominant. Laser ceramics 0–2 at % Nd3+:Y3Al5O12 have been obtained by the solid-phase sintering of oxide powders (R ~ 2.5). The slope efficiency for 1 at % Nd3+:Y3Al5O12 laser ceramics is found to be 33%.

  相似文献   
2.
Properties of as prepared or nanoengineered III-V semiconductor surfaces provide attractive means for photonic detection of different adsorbants from surrounding gaseous or liquid environments. To be practical, this approach requires that the surface is made selectively sensitive (functionalized) to targeted species. In addition, such surface has also to stay stable over extended period of time to make it available for rapid testing. Numerous reports demonstrate attractive properties of GaAs for sensing applications. One of the most fundamental issues relevant to these applications concerns the ability to functionalize chemically, or biologically, the surface of GaAs. The most studied method of GaAs surface functionalization is based on formation of self-assembled monolayers (SAMs) of various n-alkanethiols, HS-(CH2)n-T (T = CH3, COOH, NH2, etc.). In spite of multi-year research concerning this issue, it has only been recently that a comprehensive picture of SAMs formation on GaAs and an understanding of the natural limitation of the SAM-GaAs interface in some bio-chemical sensing architectures has begun to emerge.  相似文献   
3.
Bismuth‐based hybrid perovskites are candidates for lead‐free and air‐stable photovoltaics, but poor surface morphologies and a high band‐gap energy have previously limited these hybrid perovskites. A new materials processing strategy to produce enhanced bismuth‐based thin‐film photovoltaic absorbers by incorporation of monovalent silver cations into iodobismuthates is presented. Solution‐processed AgBi2I7 thin films are prepared by spin‐coating silver and bismuth precursors dissolved in n‐butylamine and annealing under an N2 atmosphere. X‐ray diffraction analysis reveals the pure cubic structure (Fd3m) with lattice parameters of a=b=c=12.223 Å. The resultant AgBi2I7 thin films exhibit dense and pinhole‐free surface morphologies with grains ranging in size from 200–800 nm and a low band gap of 1.87 eV suitable for photovoltaic applications. Initial studies produce solar power conversion efficiencies of 1.22 % and excellent stability over at least 10 days under ambient conditions.  相似文献   
4.
Observed properties of thiol self-assembled monolayers (SAMs) on GaAs (001) surfaces can be explained by the presence of surface reconstructions, but their exact form is generally unknown. We propose a new approach to modeling the SAM-surface interface based on using alkanethiol dense packing structures as a starting point and adjusting the surface reconstruction to accommodate them. Obtained in such a way, model SAMs adsorb along the trenches in the [110] direction and exhibit a 19 degrees tilt and +/- 45 degrees twist angles, in agreement with available experimental data. The molecules of the SAM bind to both Ga and As, and cover only 50% of the available surface sites. The requirements for the SAM formation process to achieve the proposed structures are discussed.  相似文献   
5.
Chemisorption of organosulfur molecules, such as alkanethiols, arenethiols and disulfide compounds on gold surfaces and their subsequent self-organization is the archetypal process for molecular self-assembly on surfaces. Owing to their ease of preparation and high versatility, alkanethiol self-assembled monolayers (SAMs) have been widely studied for potential applications including surface functionalization, molecular motors, molecular electronics, and immobilization of biological molecules. Despite fundamental advances, the dissociative chemistry of the sulfur headgroup on gold leading to the formation of the sulfur–gold anchor bond has remained controversial. This review summarizes the recent progress in the understanding of the geometrical and electronic structure of the anchor bond. Particular attention is drawn to the involvement of gold adatoms at all stages of alkanethiol self-assembly, including the dissociation of the disulfide (S–S) and hydrogen-sulfide (S–H) bonds and subsequent formation of the self-assembled structure. Gold adatom chemistry is proposed here to be a unifying theme that explains various aspects of the alkanethiol self-assembly and reconciles experimental evidence provided by scanning probe microscopy and spectroscopic methods of surface science. While several features of alkanethiol self-assembly have yet to be revisited in light of the new adatom-based models, the successes of alkanethiol SAMs suggest that adatom-mediated surface chemistry may be a viable future approach for the construction of self-assembled monolayers involving molecules which do not contain sulfur.  相似文献   
6.
Chemisorption of alkanethiols on As-rich GaAs (001) surface under a low coverage condition was studied using first principles density functional calculations in a periodic supercell approach. The thiolate adsorption site, tilt angle and its direction are dictated by the high directionality of As dangling bond and sulfur 3p orbital participating in bonding and steric repulsion of the first three CH2 units from the surface. Small charge transfer between thiolate and surface, strong dependence of total energy on tilt angle, and a relatively short length of 2.28 A of the S-As bond indicate the highly covalent nature of the bonding. Calculated binding energy of 2.1 eV is consistent with the available experimental data.  相似文献   
7.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号