首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   348篇
  免费   9篇
  国内免费   1篇
化学   257篇
晶体学   5篇
力学   5篇
数学   34篇
物理学   57篇
  2023年   2篇
  2022年   13篇
  2021年   10篇
  2020年   8篇
  2019年   5篇
  2018年   8篇
  2017年   6篇
  2016年   12篇
  2015年   13篇
  2014年   7篇
  2013年   32篇
  2012年   23篇
  2011年   14篇
  2010年   22篇
  2009年   20篇
  2008年   17篇
  2007年   25篇
  2006年   16篇
  2005年   14篇
  2004年   12篇
  2003年   11篇
  2002年   13篇
  2001年   2篇
  2000年   4篇
  1999年   7篇
  1998年   3篇
  1997年   3篇
  1996年   5篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1984年   1篇
  1982年   2篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   4篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有358条查询结果,搜索用时 31 毫秒
1.
A detailed model for the optogalvanic effect in a neon hollow cathode discharge irradiated by a chopped CW dye laser is presented. A rate equation formalism is used to calculate the evolution of the first and second electronic configuration populations coupled by the laser and of the electric charges number density. Processes as ambipolar-like electrons loss, electronic collisional coupling of level populations and electron emission by the cathode due to VUV radiation from the 1s 2 resonant level are taken into account and further discussed.The transients and steady-state magnitude of the optogalvanic signal are calculated, compared with experimental data and related to population changes. We predict sign changes of the optogalvanic signal when the laser is tuned over transitions originating from the resonant level with respect to transitions involving the metastables states. The optogalvanic signal is shown to be basically determined by the laser-induced variations of the excited-state populations while changes in the electron temperature, due to laser energy transfer by collisions between electrons and excited atoms, play a negligible role.  相似文献   
2.
Surface-wave gas discharges sustained under the conditions of a diffusion controlled regime are studied on the basis of the fluid plasma model. The self-consistent behaviour of the plasma density and of the field intensity along the discharge length is obtained. It is shown that the nonlinearity in the particle balance equation due to stepwise ionisation determines the plasma density in terms of the field intensity and ensures self-consistent behaviour of the wave ? discharge characteristics in a diffusion controlled regime.  相似文献   
3.
4.
Polysulfonylamines. CLX. Crystal Structures of Metal Di(methanesulfonyl)amides. 10. The Three‐Dimensional Coordination Polymers M[(CH3SO2)2N], where M is Potassium, Rubidium, Cesium (Isotypic Structures for M = K, Rb) Low‐temperature X‐ray crystal structures are reported for KA (monoclinic, space group P21/c, Z′ = 1), RbA (isotypic and isostructural with KA), and CsA (monoclinic, P21/n, Z′ = 1), where A denotes the anion obtained by deprotonation of the strong nitrogen acid (MeSO2)2NH. In KA and RbA, the anion is distorted into a rare C1 conformation, whereas the standard C2 conformation is retained in the cesium complex. The structures consist of three‐dimensional coordination networks, in which each cation adopts an irregular (O6N)‐heptacoordination by forming close contacts to one (O, N)‐chelating, one (O, O)‐chelating and three κ1O‐bonding ligands; however, the coordination number for Cs+ is effectively increased to 8 by a very short Cs···Cs contact distance of 422.5 pm. The crystal packings of the isotypic compounds KA and RbA display lamellar layer substructures that involve six independent ligand‐metal bonds and comprise an internal cation lamella and peripheral regions built up from anion monolayers; the 3D framework is completed by one independent M—O bond cross‐linking the layer substructures. In contrast, CsA features anion monolayers that intercalate planar zigzag chains of cations (Cs···Cs alternatingly 422.5 and 487.5 pm, Cs···Cs···Cs 135.7°), whereby each chain is surrounded and coordinated by four anion stacks and each anion stack connects two cation chains. All structures exhibit close C—H···A interanion contacts consistent with weak hydrogen bonding.  相似文献   
5.
Density functional (BLYP, B3LYP and BHLYP) and highly correlated MP2 and CCSD(T) calculations have been performed to investigate conformers, energy barriers, intramolecular H-bond strength, gas-phase basicity and deprotonation energies of glyoxilic acid oxime (gao) and related ions in gas phase and in aqueous solution (SCRF-PCM method). BHLYP/6-311G(d,p) and B3LYP/6-31++G(d) predictions for the global minimum conformer of gao were consistent with experiment. BLYP level overestimated the H-bond and stabilized incorrectly the H-bonded conformer. The calculations in solution indicated destabilization of H-bonded conformers due to the small polarizability and weaken of the H-bond. The same global minimum structures in gas phase and aqueous solution were found for gao-neutral (ectt) and gao-dianion (e2), whereas they were different for gao-anion because of the strong decrease of the conformational energies in solution. The global minimum structures of the neutral, anion and dianion of gao, obtained in solution, are in agreement with experiment. The gas-phase basicity (GB) and molecular electrostatic potential (MEP) calculations revealed the same sites for electrophilic attack, supported by the nature of HOMO: the carbonylic oxygen for the neutral, the carboxylic oxygen for the anion and the oxime nitrogen for the dianion. MEP results in gas phase and in solution suggested a region between the two atoms, but not on one atom in accordance with bidentate binding of gao ions to a metal. The BHLYP/6-31++G(d,p) molecular properties of gao were in best consistent with CCSD(T) results. The thermodynamical properties (GB and bond deprotonation energy) of gao were better estimated at B3LYP level.  相似文献   
6.
The coordination of Cu2+ by glyoxilic acid oxime (gao)--the oxime analogue of glycine amino acid--and its deprotonated (gao- and gao2-) species has been studied with different density functional methods. Single-point calculations have also been carried out at the single- and double- (triple) excitation coupled-cluster (CCSD(T)) level of theory. The isomers studied involve coordination of Cu2+ to electron-rich sites (O,N) of neutral, anionic, and dianionic gao species in different conformations. In contrast to Cu2+-glycine, for which the ground-state structure is bidentate with the CO2(-) terminus of zwitterionic glycine, for Cu2+-gao the most stable isomer shows monodentate binding of Cu2+ with the carbonylic oxygen of the neutral form. The most stable complexes of Cu2+ interacting with deprotonated gao species (gao- and gao2-) also take place through the carboxylic oxygens but in a bidentate manner. The results with different functionals show that, for these open shell (Cu2+-L) systems, the relative stability of complexes with different coordination environments (and so, different spin distribution) can be quite sensitive to the amount of "Hartree-Fock" exchange included in the functional. Among all the functionals tested in this work, the BHandHLYP is the one that better compares to CCSD(T) results.  相似文献   
7.
A rapid, sensitive, and convenient spectrophotometric assay was developed for the measurement of amino groups on solid supports. This method is based on the reaction of amino groups of solids with an excess ofo-phthaldialdehyde (OPA) and subsequent quantitative determination of unreacted OPA by reaction with glycine. Four solids possessing variable quantities of amino groups were examined. Results indicate that about 70% of the total surface amino concentration (determined by the microKjeldahl method) are available for ligand attachment. Unlike the spectrophotometric 2,4,6-trinitrobenzenesulfonic acid method, the OPA spectrophotometric assay is more rapid, sensitive, and convenient, and unlike the spectrofluorimetric OPA, it does not require sophisticated instrumentation.  相似文献   
8.
An experimental setup that coupled IR multiple‐photon dissociation (IRMPD) and laser‐induced fluorescence (LIF) techniques was implemented to study the kinetics of the recombination reaction of dichlorocarbene radicals, CCl2, in an Ar bath. The CCl2 radicals were generated by IRMPD of CDCl3. The time dependence of the CCl2 radicals’ concentration in the presence of Ar was determined by LIF. The experimental conditions achieved allowed us to associate the decrease in the concentration of radicals to the self‐recombination reaction to form C2Cl4. The rate constant for this reaction was determined in both the falloff and the high‐pressure regimes at room temperature. The values obtained were k0 = (2.23 ± 0.89) × 10?29 cm6 molecules?2 s?1 and k = (6.73 ± 0.23) × 10?13 cm3 molecules?1 s?1, respectively.  相似文献   
9.
A study on the synthesis and mechanistical aspects of formation of 3-methyl-5-oxo-3-pyrazolin-1-carboxamide (MOPC) starting from S-methylisothiosemicarbazide hydrogen iodide and methyl acetoacetate was performed. In the alkaline aqueous solution, the intermediate methyl acetoacetate S-methylisothiosemicarbazone undergoes substitution of CH3S? anion by hydroxide anion, cyclization, carbanion formation, and elimination of methanol, thus yielding corresponding Na-enolate salt of pyrazol-5-one derivative. The structure of the compound obtained after protonation of the formed enolate salt was determined by means of spectroscopic techniques and single-crystal X-ray diffraction analysis. The mechanism of conversion of methyl acetoacetate S-methylisothiosemicarbazone into MOPC was investigated by means of the B3LYP functional, and it was found that the reaction is thermodynamically controlled.  相似文献   
10.
Nine biologically active theophylline derivatives were investigated using quantum chemical methods (density functional theory level). All calculations were performed at B3LYP/6‐31G** level of theory. The electrostatic potential charges, highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) gap, dipole moment, vibration frequencies, and electronic spectra were calculated. Log P was determined by Ghose‐Crippen method. All of the compounds under study are polar and negatively charged, which is necessary for their interaction with the receptors/enzymes. Majority of the compounds are lipophilic and they can easily diffuse through the cell membrane. The observed differences between the calculated and the experimental vibration frequencies in the Fourier Transform Infrared Spectroscopy (FTIR) spectra are established to be mainly in NH and OH bands, due to hydrogen bonds formation. The discrepancies between theoretical and experimental electronic spectra may be due to vibration effects and H‐bonding with the solvent molecules. The obtained results show that this type of spectrum is formed mainly by the xanthine fragment of the molecule, especially in the fingerprint region. All calculated properties could be useful for future qualitative‐structure activity relationship (QSAR) analysis. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号