首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   1篇
晶体学   1篇
  2021年   1篇
  2016年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Sweeteners have been used in food for centuries to increase both taste and appearance. However, the consumption of sweeteners, mainly sugars, has an adverse effect on human health when consumed in excessive doses for a certain period, including alteration in gut microbiota, obesity, and diabetes. Therefore, the application of non-nutritive sweeteners in foodstuffs has risen dramatically in the last decade to substitute sugars. These sweeteners are commonly recognized as high-intensity sweeteners because, in a lower amount, they could achieve the same sweetness of sugar. Regulatory authorities and supervisory agencies around the globe have established the maximum amount of these high-intensity sweeteners used in food products. While the regulation is getting tighter on the market to ensure food safety, reliable analytical methods are required to assist the surveillance in monitoring the use of high-intensity sweeteners. Hence, it is also necessary to comprehend the most appropriate method for rapid and effective analyses applied for quality control in food industries, surveillance and monitoring on the market, etc. Apart from various analytical methods discussed here, extraction techniques, as an essential step of sample preparation, are also highlighted. The proper procedure, efficiency, and the use of solvents are discussed in this review to assist in selecting a suitable extraction method for a food matrix. Single- and multianalyte analyses of sweeteners are also described, employing various regular techniques, such as HPLC, and advanced techniques. Furthermore, to support on-site surveillance of sweeteners’ usage in food products on the market, non-destructive analytical methods that provide practical, fast, and relatively low-cost analysis are widely implemented.  相似文献   
2.
ABSTRACT

A series of small-molecules (SMs) based on coplanar perylene unit coupled with diketopyrrolopyrrole chromophoric core exhibit broad absorption in the range of 500–800 nm and low bandgap energise of 1.6–1.7 eV. The power conversion efficiency approximately reach at 0.4% under 1.5 G illumination is achieved for organic solar cells based on a small-molecule bulk heterojunction system consisting of SMs as a donor and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) as an acceptor.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号