首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   4篇
晶体学   1篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Motion tracking of microorganisms is useful to investigate the effects of chemical or physical stimulation on their biological functions. Herein, we describe a novel electrochemical imaging method for motion tracking of microorganisms using a large-scale integration (LSI)-based amperometric device. The device consists of 400 electrochemical sensors with a pitch of 250 μm. A convection flow caused by the motion of microorganisms supplies redox species to the sensors and increases their electrochemical responses. Thus, the flow is converted to electrochemical signals, enabling the electrochemical motion tracking of the microorganisms. As a proof of concept, capillary vibration was monitored. Finally, the method was applied to monitoring the motion of Daphnia magna. The motions of these microorganisms were clearly tracked based on the electrochemical oxidation of [Fe(CN)6]4− and reduction of O2.  相似文献   
2.
Abstract

A structural phase transition of an intercalation compound Mn1/4NbS2 has been investigated by X-ray diffraction at high temperatures. The lattice parameter c exhibited a discontinuous change at 640K. The superlattice reflections observed below 640K disappeared suddenly above 640K. The phase transition at 640K took an aspect of the first-order phase transition. The precise structure analyses were performed at various temperatures above and below the phase-transition temperature. It was revealed that Mn atoms were arranged in disorder in the high-temperature phase, while the Mn atoms were ordered forming the 2a 0 × 2a 0 × c 0 superlattice in the low-temperature phase. The Nb and S atoms around the ordered Mn atoms slightly shifted from the high-symmetry position in the low-temperature phase. The order parameters were the degree of order of the Mn atoms and the degree of displacement of the Nb and S atoms.  相似文献   
3.
A bisphosphine in which a PhP-PPh bond bridges 1,8-positions of naphthalene, 1,2-dihydro-1,2-diphenyl-naphtho[1,8-cd]-1,2-diphosphole (1), was used as a bridging ligand for the preparation of dinuclear group 6 metal complexes. Free trans-1, a more stable isomer having two phenyl groups on phosphorus centers mutually trans with respect to a naphthalene plane, was allowed to react with two equivalents of M(CO)5(thf) (M = W, Mo, Cr) at room temperature to give dinuclear complexes (OC)5M(μ-trans-1)M(CO)5 (M = W (2a), Mo (2b), Cr (2c)). The preparation of the corresponding dinuclear complexes bridged by the cis isomer of 1 was also carried out starting from the free trans-1 in the following way. Mono-nuclear complexes M(trans-1)(CO)5 (M = W (3a), Mo (3b), Cr (3c)) which had been prepared by a reaction of trans-1 with one equivalent of the corresponding M(CO)5(thf) (M = W, Mo, Cr) complex, were heated in toluene, wherein a part of the trans-3a-c was converted to their respective cis isomer M(cis-1)(CO)5. Each cis trans mixture of the mono-nuclear complexes 3a-c was treated with the corresponding M(CO)5(thf) to give a cis trans mixture of the respective dinuclear complexes 2a-c. The cis isomer of the ditungsten complex 2a was isolated, and its molecular structure was confirmed by X-ray analysis, showing a shorter W?W distance of 5.1661(3) Å than that of 5.8317(2) Å in trans-2a.  相似文献   
4.
We have developed an LSI-based amperometric sensor called "Bio-LSI" with 400 measurement points as a platform for electrochemical bio-imaging and multi-point biosensing. The system is comprised of a 10.4 mm × 10.4 mm CMOS sensor chip with 20 × 20 unit cells, an external circuit box, a control unit for data acquisition, and a DC power box. Each unit cell of the chip contains an operational amplifier with a switched-capacitor type I-V converter for in-pixel signal amplification. We successfully realized a wide dynamic range from ±1 pA to ±100 nA with a well-organized circuit design and operating software. In particular, in-pixel signal amplification and an original program to control the signal read-out contribute to the lower detection limit and wide detection range of Bio-LSI. The spacial resolution is 250 μm and the temporal resolution is 18-125 ms/400 points, which depends on the desired current detection range. The coefficient of variance of the current for 400 points is within 5%. We also demonstrated the real-time imaging of a biological molecule using Bio-LSI. The LSI coated with an Os-HRP film was successfully applied to the monitoring of the changes of hydrogen peroxide concentration in a flow. The Os-HRP-coated LSI was spotted with glucose oxidase and used for bioelectrochemical imaging of the glucose oxidase (GOx)-catalyzed oxidation of glucose. Bio-LSI is a promising platform for a wide range of analytical fields, including diagnostics, environmental measurements and basic biochemistry.  相似文献   
5.
Upon epoxidation with dimethyldioxirane, the 2',5'-bis-O-silyl derivatives of 9-(3-deoxy-beta-D-glycero-pent-3-enofuranosyl)adenine gave the respective "3',4'-up" epoxides exclusively. Reaction between these epoxides and Me3Al was investigated in detail. It was found that the stereoselectivity of epoxide ring opening (anti versus syn) varied significantly upon changing the amount of Me3Al, the solvent, the O-silyl protecting group, and the reaction temperature. A possible reaction mechanism is proposed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号