首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
化学   13篇
晶体学   4篇
物理学   3篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  1998年   1篇
  1968年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
A new class of proton‐conducting polymer was developed via the sol–gel process from amino‐containing organic–inorganic hybrids by the treatment of poly(allylamine) with 3‐glycidoxypropyltrimethoxysilane doped with ortho‐phosphoric acid. The polymer matrix contains many hydrophilic sites and consists of a double‐crosslinked framework of polysiloxane and amine/epoxide. Differential scanning calorimetry results suggest that hydrogen bonding or electrostatic forces are present between H3PO4 and the amine nitrogen, resulting in an increase in the glass‐transition temperature of the poly(allylamine) chain with an increasing P/N ratio. The 31P magic‐angle spinning NMR spectra indicate that three types of phosphate species are involved in the proton conduction, and the motional freedom of H3PO4 is increased with increasing P/N ratios. The conductivity above 80 °C does not drop off but increases instead. Under a dry atmosphere, a high conductivity of 10?3 S/cm at temperatures up to 130 °C has been achieved. The maximum activation energy obtained at P/N = 0.5 suggests that a transition of proton‐conducting behavior exits between Grotthus‐ and vehicle‐type mechanisms. The dependence of conductivity on relative humidity (RH) above 50% is smaller for H3PO4‐doped membranes compared with H3PO4‐free ones. These hybrid polymers have characteristics of low water content (23 wt %) and high conductivity (10?2 S/cm at 95% RH), making them promising candidates as electrolytes for fuel cells. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3359–3367, 2005  相似文献   
2.
Streptomyces chusanensis ZS-2, isolated from a soil sample in Chusan in Taiwan, was found to produce a new Type II restriction endonuclease. This restriction enzyme was designated as SchI. The purified enzyme was characterized as having a subunit mol wt of 28 kDa, and was apparently free from exonuclease activities. It cleaves the phosphodiester bond between the fourth C and the fifth G on the 5’-CCGCGG-3’ sequence of DNAs, leaving a 2-nucleotide protruding end at its 3’ site. This data suggests that SchI is an isoschizomer of SacII. In addition, based on the comparison between SchI and SacII regarding reaction parameters, it seems that SchI is a better choice of restriction enzyme for genetic analysis and mapping.  相似文献   
3.
The effects of ion implantation on the properties of spin-on sol–gel Ba0.7Sr0.3TiO3 (BST) thin films were studied by implanted Ar+, N+, and F+ doses. The F+-implanted BST samples present leakage current density <10−6 A/cm2 at 2.5 V and dielectric constant 450. The leakage current of F+-implanted BST samples was reduced about one order of magnitude as compared with that of samples with implanted Ar+, N+ or without implantation. The thickness shrinkage from 135 to 115 nm was observed in F+-implanted BST films (before annealing treatment) and a respective increase in the refractive index from 1.84 to 2.05 was measured. After annealing the implanted samples, the changes of thickness and refractive index depend on the concentration of implanted dose. Based on an infrared transmission study of the samples we suggest that the ion-implanted samples with smaller dose (5×1014 cm−2) have fewer −OH contaminants than the non-implanted or implanted samples with the larger doses (1×1015 cm−2). Based on the results presented, we conclude that suitable ion implantation densifies the spin-on sol–gel BST films and reduces the −OH contaminants in the films.  相似文献   
4.
Hybrid organic–inorganic materials derived from 3‐glycidoxypropyltrimethoxylsilane were prepared via two different synthetic routes: (1) the HCl‐catalyzed sol–gel approach of silane followed by the lithium perchlorate (LiClO4)/HCl‐catalyzed opening of epoxide and (2) the simultaneous gelation of tin/LiClO4‐catalyzed silane/epoxide groups. LiClO4 catalyzed the epoxide polymerization, and its effects on the structures of these hybrid materials were studied by NMR. The structure of the inorganic side was probed by solid‐state 29Si NMR spectroscopy, and the characterizations of the organic side and the chemical processes involved in the different synthetic routes were performed with solid‐state cross‐polarity/magic‐angle‐spinning 13C NMR. The different synthetic routes significantly affected the polymerization behaviors of the organic and inorganic sides in the presence of LiClO4. A larger amount of LiClO4 promoted the opening of epoxide and led to the formation of longer poly(ethylene oxide) chains via the HCl‐catalyzed sol–gel approach, whereas in the case of the tin‐catalyzed approach, the faster polymerization of the inorganic side hindered the growth of the organic network. The addition of LiClO4 was proven to be without crystalline salt present in the hybrid networks by wide‐angle X‐ray powder diffraction. Also, the interactions between the ions and hybrid host, examined with Fourier transform infrared and 7Li proton‐decoupled magic‐angle‐spinning NMR, further demonstrated that extensive ion aggregation existed in these hybrid materials. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 151–161, 2004  相似文献   
5.
New low band gap thiophene‐phenylene‐thiophene ( TPT )‐based donor‐acceptor‐donor random copolymers were synthesized for optoelectronic device applications by a palladium‐catalyzed Stille coupling reaction under microwave heating. The acceptors included 2,3‐bis(4‐(2‐ethylhexyloxy)phenyl)‐5,8‐bis[5′‐bromo‐dithien‐2‐yl‐quinoxalines] ( DTQ ) and 3,6‐bis(5‐bromothiophen‐2‐yl)‐2,5‐bis(2‐ethyl‐hexyl)‐pyrrolo[3,4‐c]‐pyrrole‐1,4‐dione ( DPP ). The prepared random copolymers were named as PTPTDTQ0.55 , PTPTDTQ0.34DPP0.14 , and PTPTDTQ0.26DPP0.34 depending on the copolymer ratio. The optical band gaps (E) of PTPTDTQ0.55 , PTPTDTQ0.34DPP0.14 , and PTPTDTQ0.26DPP0.34 were 1.74, 1.56, and 1.48 eV, respectively. The hole mobility obtained from the field‐effect transistor devices prepared from PTPTDTQ0.55 , PTPTDTQ0.34DPP0.14 , and PTPTDTQ0.26DPP0.34 were 2.2 × 10?3, 2.4 × 10?3, and 4.7 × 10?3 cm2 V?1 s?1, respectively, with the on‐off ratios of 4.0 × 104, 4.0 × 104, and 5.3 × 104. It suggested that the significant intramolecular charge transfer between the TPT and acceptor led to the band gap reduction and hole mobility enhancement. Polymer solar cells of these TPT ‐based copolymers blended with 1‐(3‐methoxycarbonyl)propyl‐1‐phenyl‐[6,6]‐C‐71 (PC71BM) under illumination of AM 1.5G (100 mW cm?2) solar simulator exhibited a power conversion efficiency (PCE) as high as 3.71%. Besides, the near‐infrared photodetector device prepared from PTPTDTQ0.26DPP0.34 showed a high external quantum efficiency exceeding 32% at 700 nm (under ?3 V bias) and fast‐speed response. This study suggests that the prepared TPT ‐based donor‐acceptor random copolymers exhibited promising and versatile applications on optoelectronic devices. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2351–2360, 2010  相似文献   
6.
The chemically covalent polyethylenimine–siloxane hybrids doped with various amounts of ortho‐phosphoric acid (H3PO4) were prepared and characterized by FTIR, DSC, TGA, and solid‐state NMR spectra. The protonic conduction behavior of these materials was also investigated by means of impedance measurements. These observations indicate that the hydrogen bonding and protonic interactions exist between the dopant H3PO4 and the hybrid host, resulting in an increase in T g of polyethylenimine segments. These hybrids are thermally stable up to 200 °C from TGA analysis. Conductivity studies show an Arrhenius behavior characteristic and the Grotthus‐like proton conduction, and a high conductivity of 10?2–10?3 S cm?1 at 110 °C in dry atmosphere for the hybrid membrane with H3PO4/EI of 0.5. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2135–2144, 2006  相似文献   
7.
Raman scattering (including nonresonant, resonant, and surface enhanced scattering) of light by optical and surface phonons of ZnO nanocrystals and nanorods has been investigated. It has been found that the nonresonant and resonant Raman scattering spectra of the nanostructures exhibit typical vibrational modes, E 2(high) and A 1(LO), respectively, which are allowed by the selection rules. The deposition of silver nanoclusters on the surface of nanostructures leads either to an abrupt increase in the intensity (by a factor of 103) of Raman scattering of light by surface optical phonons or to the appearance of new surface modes, which indicates the observation of the phenomenon of surface enhanced Raman light scattering. It has been demonstrated that the frequencies of surface optical phonon modes of the studied nanostructures are in good agreement with the theoretical values obtained from calculations performed within the effective dielectric function model.  相似文献   
8.
A novel hybrid white light-emitting diode (LED) is proposed to enhance the red color and stability of the chromaticity under various operating currents using an AlGaInP photon-recycling (PR) epilayer. A blue/yellow white InGaN LED sample is covered with an external patterned AlGaInP epilayer. Under an optimum aperture ratio of 30%, the luminous efficiency of the PR-LED lamp can achieve a color coordinate of (x=0.340, y=0.295). When the injection current increases from 50 to 350 mA, the color temperature decreases from 4030 to 3700 K and the color rendering index increases from 81 to 86. These could be due to the fact that the AlGaInP epilayer was not attached onto the LED chip, alleviating the thermal effect on the color coordinate. The present white PR-LED samples have high potential for portable liquid-crystal-display backlight applications.  相似文献   
9.
Novel ABA‐type dumbbell‐like water‐soluble copolymers [D230(EI)4, D400(EI)4, and D400(EI)8] were synthesized by introducing ethylenimine (EI) groups into both sides of polyoxypropylenediamines via a simple in situ ethylamination of polyoxypropylenediamine with 2‐chloroethylamine hydrochloride. The structures of the resultant polymers were identified by Fourier transform infrared spectroscopy and 1H NMR. The percentages of primary, secondary, and tertiary amine present were determined by the potentiometric titration method after treatments with the appropriate chemicals of salicylaldehyde and acetic anhydride. The surface tension and solubilizing behavior of pyrene in the presence of these polymers in aqueous medium were also investigated, and the efficiency to reduce the surface tension and solubilizing behavior of pyrene depends on the attachments of EI to polymer backbone. The chelating properties of these polymers were examined quantitatively by ultraviolet–visible (UV–vis) spectroscopy in the presence of Cu2+ ions in aqueous solution, and continuous variation analysis revealed that the most stable complex is formed at the normality ratio of [N]/[Cu2+] = 3.0. UV–vis spectroscopy and transmission electron microscopy were used to evaluate the dumbbell‐like water‐soluble copolymer, D400(EI)8, as a stabilizer for preparing colloidal noble metal nanoparticles (Au and Pt) in aqueous solution. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1360–1370, 2003  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号