首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   1篇
晶体学   1篇
  2019年   1篇
  2010年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Surface treatment of titanium (Ti) surface has been extensively studied to improve its properties for biomedical applications, including hydrophilicity, corrosion resistance, and tissue integration. In this present work, we present the effects of thermal oxidation as surface modification method on metallic titanium (Ti). The Ti foils were oxidized at 300°C, 400°C, 500°C, and 600°C under air atmosphere for 3 hours, which formed oxide layer on Ti surface. The physicochemical properties including surface chemistry, roughness, and thickness of the oxide layer were evaluated in order to investigate how these factors affected surface hydrophilicity, microhardness, and corrosion resistance properties of the Ti surface. The results revealed that surfaces of all oxidized samples were modified by formation of titanium dioxide layer, of which morphology, phase, and thickness were changed according to the oxidized temperatures. Increasing oxidation temperature led to the formation of thicker oxide layer and phase transformation of anatase to rutile. The presence of the oxide layer helped the improvement of corrosion resistance and microhardness. The most improvement in surface roughness was found in the specimens treated at 400°C, which significantly improved surface hydrophilicity. But both surface roughness and hydrophilicity reduced when oxidized at 500°C and 600°C, suggesting that hydrophilicity was dominated by the surface roughness. In addition, this surface treatment did not reduce the biocompatibility of the metallic Ti substrates against murine osteoblasts (MC3T3).  相似文献   
2.
Impurity doping on semiconductor nanowires formed via vapor–liquid–solid (VLS) mechanism has been investigated with the intention being to control the transport properties. Here we demonstrate that an addition of excess impurity dopants induces a mesostructure of long range periodic arched-shape in Sb-doped SnO2 nanowires. The microstructural and composition analysis demonstrated the importance of the presence of impurities at the growth interface during VLS growth rather than the dopant incorporation into nanowires, indicating kinetically induced mechanisms.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号