首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   4篇
晶体学   2篇
物理学   4篇
  2020年   1篇
  2017年   2篇
  2009年   2篇
  2007年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
Based on the surface passivation of n-type silicon in a silicon drift detector(SDD), we propose a new passivation structure of SiO2/Al2O3/SiO2 passivation stacks. Since the SiO2 formed by the nitric-acid-oxidation-of-silicon(NAOS)method has good compactness and simple process, the first layer film is formed by the NAOS method. The Al2O3 film is also introduced into the passivation stacks owing to exceptional advantages such as good interface characteristic and simple process. In addition, for requirements of thickness and deposition temperature, the third layer of the SiO2 film is deposited by plasma enhanced chemical vapor deposition(PECVD). The deposition of the SiO2 film by PECVD is a low-temperature process and has a high deposition rate, which causes little damage to the device and makes the SiO2 film very suitable for serving as the third passivation layer. The passivation approach of stacks can saturate dangling bonds at the interface between stacks and the silicon substrate, and provide positive charge to optimize the field passivation of the n-type substrate.The passivation method ultimately achieves a good combination of chemical and field passivations. Experimental results show that with the passivation structure of SiO2/Al2O3/SiO2, the final minority carrier lifetime reaches 5223 μs at injection of 5×1015 cm-3. When it is applied to the passivation of SDD, the leakage current is reduced to the order of nA.  相似文献   
2.
通过实验和模拟计算对比分析了i/p界面过渡层对太阳电池性能的影响.结合具体实验工艺参数,模拟计算了不同带隙和缺陷态密度的过渡层对太阳电池的影响,同时结合实验情况重现了宽带隙高缺陷态密度过渡层对太阳电池的损伤,为实验结果提供了理论依据.通过优化调整i/p界面过渡层的制备方法得到了转换效率为7.09%的聚酰亚胺衬底非晶硅薄膜太阳电池. 关键词: 柔性衬底 太阳电池 AMPS 模拟计算  相似文献   
3.
采用X射线衍射(XRD)技术连续扫描法和薄膜衍射法对RF-PECVD制备的微晶硅薄膜结构进行了研究.改变硅烷浓度和反应功率,控制薄膜的生长速率,已达到制备不同材料的目的.根据硅基薄膜的电学特性和XRD测试,随着反应功率的增加,硅基薄膜的生长速率不断提高,微晶硅薄膜的晶化程度不断增大.  相似文献   
4.
Atomic-layer-deposited(ALD) aluminum oxide(Al_2O_3) has demonstrated an excellent surface passivation for crystalline silicon(c-Si) surfaces, as well as for highly boron-doped c-Si surfaces. In this paper, water-based thermal atomic layer deposition of Al_2O_3 films are fabricated for c-Si surface passivation. The influence of deposition conditions on the passivation quality is investigated. The results show that the excellent passivation on n-type c-Si can be achieved at a low thermal budget of 250℃ given a gas pressure of 0.15 Torr. The thickness-dependence of surface passivation indicates that the effective minority carrier lifetime increases drastically when the thickness of Al_2O_3 is larger than 10 nm. The influence of thermal post annealing treatments is also studied. Comparable carrier lifetime is achieved when Al_2O_3 sample is annealed for 15 min in forming gas in a temperature range from 400℃ to 450℃. In addition, the passivation quality can be further improved when a thin PECVD-SiN_x cap layer is prepared on Al_2O_3, and an effective minority carrier lifetime of2.8 ms and implied Voc of 721 mV are obtained. In addition, several novel methods are proposed to restrain blistering.  相似文献   
5.
姜帅  贾锐  陶科  侯彩霞  孙恒超  于志泳  李勇滔 《中国物理 B》2017,26(8):87802-087802
Interdigitated back contact(IBC) solar cells can achieve a very high efficiency due to its less optical losses. But IBC solar cells demand for high quality passivation of the front surface. In this paper, a polycrystalline silicon/SiO_2 stack structure as front surface field to passivate the front surface of IBC solar cells is proposed. The passivation quality of this structure is investigated by two dimensional simulations. Polycrystalline silicon layer and SiO_2 layer are optimized to get the best passivation quality of the IBC solar cell. Simulation results indicate that the doping level of polycrystalline silicon should be high enough to allow a very thin polycrystalline silicon layer to ensure an effective passivation and small optical losses at the same time. The thickness of SiO_2 should be neither too thin nor too thick, and the optimal thickness is 1.2 nm.Furthermore, the lateral transport properties of electrons are investigated, and the simulation results indicate that a high doping level and conductivity of polycrystalline silicon can improve the lateral transportation of electrons and then the cell performance.  相似文献   
6.
柔性衬底非晶硅薄膜太阳电池量子效率的研究   总被引:2,自引:1,他引:1  
量子效率是太阳电池对光的吸收能力的评定标准之一.本文通过对柔性衬底倒结构n-I-p非晶硅薄膜太阳电池量子效率的测量,同时结合本征材料吸收特性,讨论了衬底温度和反应压强对太阳电池量子效率的影响.结果表明:本征非晶硅薄膜的吸收特性是影响太阳电池量子效率的主要因素,同时光生载流子在本征层和界面处的复合也会对太阳电池的量子效率有所影响.经过反应条件优化得到了转换效率为5.67;的聚酰亚胺衬底太阳电池.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号