首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
  国内免费   4篇
化学   4篇
晶体学   2篇
  2017年   2篇
  2015年   2篇
  2013年   2篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
以张家口高岭土为原料,通过直接插层与取代相结合的方法制备高岭石-硬脂酸插层复合物。利用X射线粉末衍射、红外光谱、热重及透射电子显微镜对制备产物进行表征。结果表明:硬脂酸插入到高岭石层间,高岭石层间距d001值由0.72 nm增加到4.05~4.37 nm,插层率达到86.9%;反应时间和溶液p H值会对高岭石-硬脂酸插层复合物的层间距及插层率产生影响;甲氧基嫁接在高岭石表面,与硬脂酸分子同时存在于高岭石层间。高岭石经甲醇改性后脱羟基温度明显降低,高岭石羟基活性提高;高岭石-硬脂酸插层复合物的稳定温度在160℃以下。经过硬脂酸插层改性后的高岭石片层,从边缘开始出现卷曲现象,并且部分长条状片层形成类似埃洛石相的纳米卷;对硬脂酸插层高岭石的作用机理进行分析,结合结构计算,提出高岭石-硬脂酸插层复合物的结构模型,该模型可以解释高岭石-硬脂酸插层复合物在不同条件制备产物层间距变化的原因。  相似文献   
2.
归属于八面沸石结构(FAU)的X型沸石分子筛是一种重要的催化剂,在石油化工及吸附剂领域具有广泛应用前景,目前利用传统工艺生产的沸石分子筛价格昂贵.我国煤系高岭石资源丰富、品质优良,经过醋酸钾插层处理后,是合成X型分子筛的理想原料.本文应用X射线衍射、红外光谱、热重等多种表征技术,对高温焙烧后的高岭石/醋酸钾插层复合物进行了表征.结果表明,焙烧高岭石/醋酸钾插层复合物合成X型沸石的最佳温度为800℃,最佳浓度为30;.并进一步探讨了高岭石/醋酸钾插层复合物合成X型沸石分子筛的机理、结构以及钾离子在沸石分子筛骨架外的分布位置.  相似文献   
3.
以高岭石/甲醇(K/M)复合物为前驱体,利用置换法制备出了高岭石/γ-氨丙基三乙氧基硅烷插层复合物(K/APTES),并应用 XRD、FTIR、TEM、TG-DSC分析等表征手段对复合物进行了分析.结果表明:APTES分子的氨基与前驱体K/M的四面体硅氧烷基、嫁接在铝氧八面体表面上的甲氧基均发生键合作用形成氢键,APTES分子为两层倾斜排列于高岭石层间,倾角大小与温度有关.插层剂APTES破坏了高岭石层间的氢键,加剧了高岭石自身结构中硅氧四面体片层与铝氧八面体片层之间存在的错位,使得K/APTES插层复合物的部分片层卷曲变形.还针对复合物的插层剂APTES的脱嵌反应,采用Satava积分法和Achar-Brindley-Sharp-Wendworth微分法相结合的动力学方法计算得到了完整的动力学三因子:活化能E=197.8 kJ·mol-1,指前因子的对数lg(A/s-1)=14.60,最概然机理函数为:f(α)=[-ln(1-α)]-1,G(α)=α+(1-α)ln(1-α).  相似文献   
4.
以高岭石/甲醇(K/M)复合物为前驱体,利用置换法制备出了高岭石/γ-氨丙基三乙氧基硅烷插层复合物(K/APTES),并应用XRD、FTIR、TEM、TG-DSC分析等表征手段对复合物进行了分析。结果表明:APTES分子的氨基与前驱体K/M的四面体硅氧烷基、嫁接在铝氧八面体表面上的甲氧基均发生键合作用形成氢键,APTES分子为两层倾斜排列于高岭石层间,倾角大小与温度有关。插层剂APTES破坏了高岭石层间的氢键,加剧了高岭石自身结构中硅氧四面体片层与铝氧八面体片层之间存在的错位,使得K/APTES插层复合物的部分片层卷曲变形。还针对复合物的插层剂APTES的脱嵌反应,采用Satava积分法和AcharBrindley-Sharp-Wendworth微分法相结合的动力学方法计算得到了完整的动力学三因子:活化能E=197.8 k J·mol-1,指前因子的对数lg(A/s-1)=14.60,最概然机理函数为:f(α)=[-ln(1-α)]-1,G(α)=α+(1-α)ln(1-α)。  相似文献   
5.
以张家口宣化高岭土为原料,制备高岭石/二甲基亚砜( dimethylsulfoxide, DMSO)插层复合物。利用X射线衍射( X-ray diffraction, XRD ),傅里叶红外光谱( Fourier transform infrared spectracopy, FT-IR ),热重-差热分析( Thermogravimetric-differential thermal analysis, TG-DTA)对制备的复合物进行表征。其中,XRD和FT-IR显示二甲基亚砜分子已进入高岭石层间,使其层间距由0.718 nm增加至1.130 nm。 TG-DTA结果表明插层复合物热相变经历以下三个阶段:二甲基亚砜分子脱嵌(约199℃),脱羟基(约522℃),高岭石重结晶(997℃)。此外,依据表征结果推测二甲基亚砜分子在高岭石层间存在形式,构建了复合物体系的结构模型,并对高岭石/二甲基亚砜插层作用机理进行了讨论。  相似文献   
6.
以张家口高岭土为原料,通过直接插层与取代相结合的方法制备高岭石-硬脂酸插层复合物.利用 X射线粉末衍射、红外光谱、热重及透射电子显微镜对制备产物进行表征.结果表明:硬脂酸插入到高岭石层间,高岭石层间距d001值由0.72 nm增加到4.05~4.37 nm,插层率达到86.9%;反应时间和溶液pH值会对高岭石-硬脂酸插层复合物的层间距及插层率产生影响;甲氧基嫁接在高岭石表面,与硬脂酸分子同时存在于高岭石层间.高岭石经甲醇改性后脱羟基温度明显降低,高岭石羟基活性提高;高岭石-硬脂酸插层复合物的稳定温度在160 ℃以下.经过硬脂酸插层改性后的高岭石片层,从边缘开始出现卷曲现象,并且部分长条状片层形成类似埃洛石相的纳米卷;对硬脂酸插层高岭石的作用机理进行分析,结合结构计算,提出高岭石-硬脂酸插层复合物的结构模型,该模型可以解释高岭石-硬脂酸插层复合物在不同条件制备产物层间距变化的原因.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号