首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   3篇
物理学   1篇
  2022年   1篇
  2008年   1篇
  1998年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Time-resolved mass spectrometry was used for analysis of the plasma reactions in radio frequency (RF) SiCl 4 and SiCl 4 –O 2 discharges as functions of starting partial pressure and electrical power. Molecular concentrations of the reactants and products from SiCl 4 alone and with O 2 were obtained from the mass spectra and used for plotting the kinetic curves. The SiCl 4 and O 2 consumption rates were calculated from the kinetic curves and compared with results of theoretical simulation of the reaction. Direct electron impact decomposition was found to be the main pathway for pure SiCl 4 conversion. On the contrary, the consumption of SiCl 4 in the SiCl 4 +O 2 mixtures was largely chemical. The experimental macrokinetics are in agreement with a model in which oxidation is caused by the atomic oxygen.  相似文献   
2.
A mathematical model of the volumetric part of plasma polymerization influenced by gravity is presented. Plasma-activated adhesion of monomer molecules to a surface of a germinal particle is assumed as a basic mechanism of particulate growth. The continuity equation for the flow of matter through the discharge has been formulated and solved in two extreme asymptotic approximations --for small and major duration of the process. Several non-equilibrium distribution functions of the polymer were obtained, for instance, an amount of the particles as a function of their size or time of fall. Within the adopted model this function demonstrates a sharp downward increase inside a discharge. In addition it contains such parameters as the free fall acceleration or reaction rate coefficients, variations of which enable control of the discharge and properties of the disperse medium.  相似文献   
3.
Systems of differential rate equations characteristic for several basic types of plasma chemical reactions have been obtained. Every system permits one to reproduce a full kinetic picture of the reaction (kinetic curves of the starting, intermediate, and final compounds) and identify its mechanism by comparing this picture with the experimental kinetic pattern. The four important cases of a gas-phase plasma polymerization were considered in detail: radical propagating chain and stepwise recombination–activation, each having two different mechanisms of the death of plasma radicals. A comparison between the theoretical and experimental (mass spectrometry) kinetic patterns of six starting monomers and their low-molecular-weight products has established the chain mechanism predominating in all cases at the initial stages of the synthesis.  相似文献   
4.
Nowadays, amaranth is a valuable multipurpose crop and a source of a number of very important biologically active substances. The aim of this study was to develop a comprehensive scheme for obtaining fatty oil, triterpenoids and lectin from the seeds of Amaranthus caudatus L. in one technological cycle. Two variants of the lectin and triterpene compound purification method from amaranth seeds were tested. It was determined that the extraction of triterpene compounds should be carried out after purification of the lectin from degreased seeds. The rationality of this sequence of technological operations is explained by the lability of the lectin and the insolubility in water of triterpene compounds from amaranth seeds. The study also presents a scheme for obtaining squalene from amaranth oil by chromatography on silica gel and proposes a more effective affinity sorbent for purification of the lectin. The use of such a sorbent also opens up the possibility of preserving other water-soluble substances from amaranth seeds. The physicochemical characteristics and carbohydrate specificity of the lectin are described and new data on the results of the interaction of lectin with human and animal erythrocytes are given. The obtained results are discussed in the light of the complex use of raw materials.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号