首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   11篇
  国内免费   4篇
化学   102篇
力学   2篇
物理学   11篇
  2023年   4篇
  2022年   5篇
  2021年   2篇
  2020年   6篇
  2019年   7篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   15篇
  2013年   6篇
  2012年   6篇
  2011年   11篇
  2010年   9篇
  2009年   5篇
  2008年   5篇
  2007年   7篇
  2006年   6篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1998年   2篇
排序方式: 共有115条查询结果,搜索用时 15 毫秒
1.
Gentiopicroside (GPS), the main bioactive component in Gentiana scabra Bge., has attracted our attention owing to its high bioactivity, especially the treatment of hepatobiliary disorders. The aglycone form of GPS, a typical secoiridoid glycoside, is considered to be more readily absorbed than its parent drug. This study aimed to identify and characterize the metabolites after GPS incubated with β‐glucosidase in buffer solution at 37°C. Samples of biotransformed solution were collected and analyzed by ultraperformance liquid chromatography (UPLC)/quadrupole–time‐of‐flight mass spectrometry (Q‐TOF MS). A total of four metabolites were detected: two were isolated and elucidated by preparative‐HPLC and NMR techniques, and one of those four is reported for the first time. The mass spectral fragmentation pattern and accurate masses of metabolites were established on the basis of UPLC/Q‐TOF MS analysis. Structure elucidation of metabolites was achieved by comparing their fragmentation pattern with that of the parent drug. A fairly possible metabolic pathway of GPS by β‐glucosidase was proposed. The hepatoprotective activities of metabolites M1 and M2 were investigated and the results showed that their hepatoprotective activities were higher than that of parent drug. Our results provided a meaningful basis for discovering lead compounds from biotransformation related to G. scabra Bge. in traditional Chinese medicine. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
2.
Several chemical and biological studies have revealed R,S‐goitrin as the main bioactive constituent of Isatis indigotica Fort., responsible for antiviral antiendotoxin activity; however, few pharmacokinetic studies have been conducted. To comprehend the kinetics of R,S‐goitrin and promote its curative application, a rapid and sensitive UHPLC–MS/MS method was developed. The selected reaction monitoring transitions were m/z 130.0 → 70.0 for R,S‐goitrin and m/z 181.1 → 124.0 for the internal standard in a positive‐ion mode. The established UHPLC–MS/MS method achieved good linearity for R,S‐goitrin at 10–2000 ng/mL. The intra‐ and interday accuracy levels were within ±9.7%, whereas the intraday and interday precision levels were <11.3%. The extraction recovery, stability and matrix effect were within acceptable limits. The validated method was successfully applied for the pharmacokinetic analysis of R,S‐goitrin in rats after oral administration. Moreover, a total of six metabolites were structurally identified through UHPLC–Q/TOF–MS. The proposed metabolic pathways of R,S‐goitrin in rats involve demethylation, acetylation, glutathionylation and oxygenation.  相似文献   
3.
Notoginsenoside R1 (NGR1), a diagnostic protopanaxatriol‐type (ppt‐type) saponin in Panax notoginseng, possesses potent biological activities including antithrombotic, anti‐inflammatory, neuron protection and improvement of microcirculation, yet its pharmacokinetics and metabolic characterization as an individual compound remain unclear. The aim of this study was to investigate the exposure profile of NGR1 in rats after oral and intravenous administration and to explore the metabolic characterization of NGR1. A simple and sensitive ultra‐fast liquid chromatographic–tandem mass spectrometric method was developed and validated for the quantitative determination of NGR1 and its major metabolites, and for characterization of its metabolic profile in rat plasma. The blood samples were precipitated with methanol, quantified in a negative multiple reaction monitoring mode and analyzed within 6.0 min. Validation parameters (linearity, precision and accuracy, recovery and matrix effect, stability) were within acceptable ranges. After oral administration, NGR1 exhibited dose‐independent exposure behaviors with t1/2 over 8.0 h and oral bioavailability of 0.25–0.29%. A total of seven metabolites were characterized, including two pairs of epimers, 20(R)‐notoginsenoside R2/20(S)‐notoginsenoside R2 and 20(R)‐ginsenoside Rh1/20(S)‐ginsenoside Rh1, with the 20(R) form of saponins identified for the first time in rat plasma. Five deglycometabolites were quantitatively determined, among which 20(S)‐notoginsenoside R2, ginsenoside Rg1, ginsenoside F1 and protopanaxatriol displayed relatively high exploration, which may partly explain the pharmacodynamic diversity of ginsenosides after oral dose.  相似文献   
4.
Cyanide is extremely hazardous to living organisms and the environment. Owing to its wide range of applications and high toxicity, the development of functional materials for cyanide detection and sensing is highly desirable. Host–guest complexation between bis(p-phenylene)-34-crown-10 H and N-methylacridinium salt G remarkably decreases the detection limit for cyanide anions compared with that of the guest itself. The [2]pseudorotaxane selectively recognizes the cyanide anion with high optical sensitivity as a result of the nucleophilic addition of the cyanide anion at the 9-position of G . The host–guest complexation is further incorporated into supramolecular materials for the visual detection of cyanide anions, especially the detection of cellular cyanide excretion with a detection limit of 0.6 μm . This supramolecular method provides an extremely distinct strategy for the visual detection of cyanide anions.  相似文献   
5.
Pyrrolizidine alkaloids are highly hepatotoxic natural chemicals that produce irreversible chronic and acute hepatotoxic effects on human beings. Purification of large amounts of pyrrolizidine alkaloids is necessary for toxicity studies. In this study, an efficient method for targeted analysis and purification of pyrrolizidine alkaloid cis/trans isomers from herbal materials was developed for the first time. Targeted analysis of the hepatotoxic pyrrolizidine alkaloids was performed by liquid chromatography with tandem mass spectrometry (precursor ion scan and daughter ion scan), and the purification of pyrrolizidine alkaloids was achieved with a mass‐directed auto purification system. The extraction and preparative liquid chromatography conditions were optimized. The developed method was applied to analysis of Gynura japonica (Thunb.) Juel., a herbal medicine traditionally used for detumescence and relieving pain but is potentially hepatotoxic as it contains pyrrolizidine alkaloids. Twelve pyrrolizidine alkaloids (six cis/trans isomer pairs) were identified with reference compounds or characterized by liquid chromatography with tandem mass spectrometry, and five individual pyrrolizidine alkaloids, including (E)‐seneciphylline, seneciphylline, integerrimine, senecionine, and seneciphyllinine, were prepared from G. japonica roots with high efficiency. The results of this work provide a new technique for the preparation of large amounts of pyrrolizidine alkaloid reference substances, which will also benefit toxicological studies of pyrrolizidine alkaloids and treatments for pyrrolizidine alkaloid‐induced toxicity.  相似文献   
6.
Molecular components of opposite character are often incorporated within a single system, with a rigid core and flexible side arms being a common design choice. Herein, molecule L has been designed and prepared featuring the reverse design, with rigid side arms (arylalkynyl) serving to calibrate the mobility of the flexible polyether links in the core. Crystallization of this molecule with PbII ions led to a dynamic metal–organic framework (MOF) system that not only exhibits dramatic, reversible single‐crystal‐to‐single‐crystal transformations, but combines distinct donor and acceptor characteristics, allowing for substantial uptake of PdCl2 and colorimetric sensing of H2S in water.  相似文献   
7.
A novel triphenylphosphine (TPP) treatment strategy was developed to prepare the near-infrared emission CsPbI3 nanocrystal (NC)-polymer composite thin-film luminescent solar concentrators (LSCs) featuring high absolute photoluminescence quantum yield (PLQY), low reabsorption, and high stability. The PL emission of the LSCs is centered at about 700 nm with 99.4±0.4 % PLQY and narrow full width at half maximum (FWHM) of 75 meV (30 nm). Compared with LSCs prepared with classic CsPbI3 NCs, the stability of the LSCs after TPP treatments has been greatly improved, even after long-term (30 days) immersion in water and strong mercury-lamp irradiation (50 mW cm−2). Owing to the presence of lone-pair electrons on the phosphorus atom, TPP is also used as a photoinitiator, with higher efficiency than other common photoinitiators. Large-area (ca. 75 cm2) infrared LSCs were achieved with a high optical conversion efficiency of 3.1 % at a geometric factor of 10.  相似文献   
8.
Clarification of the quality and biological effect equivalence of traditional Chinese medicines containing multi‐origin species is essential to improve their current quality standards, and also is the core problem to clarify the origins of single herbs with multi‐species in Chinese formulas that will guarantee their clinical application. Huangqin decoction is the typical one of multi‐origin formulas frequently used in traditional Chinese medicine and Kampo medicine. An ultra high performance liquid chromatography with electrospray ionization–tandem mass spectrometry was developed for chemical profiling and marker quantification of Huangqin decoction prepared with two different original types of peony root, white and red peony root. Forty‐seven main peaks in chemical profiling of Huangqin decoction prepared with white and red peony root were identified: nine were from peony root, 20 from baical skullcap root, 17 from licorice root, and one from jujubae fruit. The markers characteristics of the respective types of peony root in Huangqin decoction differ from that in single herbs, especially in terms of monoterpenoids and hydrolysable tannins. Subsequently, 17 representative markers in Huangqin decoction prepared with three types of peony root and their chemical characteristics and content distribution were carried out.  相似文献   
9.
Angiotensin‐converting enzyme (ACE) plays an important role in the renin–angiotensin system and ACE activity is usually assayed in vitro by monitoring the transformation from a substrate to the product catalyzed by ACE. A rapid and sensitive analysis method or ACE activity by quantifying simultaneously the substrate hippuryl–histidyl–leucine and its product hippuric acid using an ultra‐performance liquid chromatography coupled with electrospray ionization‐mass spectrometry (UPLC‐MS) was first developed and applied to assay the inhibitory activities against ACE of several natural phenolic compounds. The established UPLC‐MS method showed obvious advantages over the conventional HPLC analysis in shortened running time (3.5 min), lower limit of detection (5 pg) and limit of quantification (18 pg), and high selectivity aided by MS detection in selected ion monitoring (SIM) mode. Among the six natural products screened, five compounds, caffeic acid, caffeoyl acetate, ferulic acid, chlorogenic acid and resveratrol indicated potent in vitro ACE inhibitory activity with IC50 values of 2.527 ± 0.032, 3.129 ± 0.016, 10.898 ± 0.430, 15.076 ± 1.211 and 6.359 ± 0.086 mm , respectively. A structure–activity relationship estimation suggested that the number and the situation of the hydroxyls on the benzene rings and the acrylic acid groups may play the most predominant role in their ACE inhibitory activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
10.
This paper aims to illustrate the rich potential of the thioether-carboxyl combination in generating coordination networks with tunable and interesting structural features. By simply varying the ratio between Cu(NO(3))(2) and the bifunctional ligand tetrakis(methylthio)benzenedicarboxylic acid (TMBD) as the reactants, three coordination networks can be hydrothermally synthesized in substantial yields, which present a distinct evolution with regard to metal-ligand interactions. Specifically, Cu(TMBD)(0.5)(H(2)TMBD)(0.5)·H(2)TMBD (1) was obtained with a relatively small (1:1) Cu(NO(3))(2)/TMBD ratio, and crystallizes as an one-dimensional (1D) coordination assembly based on Cu(I)-thioether interactions, which is integrated by hydrogen-bonding to additional H(2)TMBD molecules to form a three-dimensional (3D) composite network with all the carboxylic acid and carboxylate groups remaining uncoordinated to the metal ions. A medium (1.25:1) Cu(NO(3))(2)/TMBD ratio leads to compound Cu(2)TMBD, in which Cu(I) ions simultaneously bond to the carboxylate and thioether groups, while an even higher (2.4:1) Cu(NO(3))(2)/TMBD ratio produced a mixed-cation compound Cu(II)(2)OHCu(I)(TMBD)(2)·2H(2)O (2), in which the carboxylic groups are bonded to (cupric) Cu(II) ions, and the thioether groups to Cu(I). Despite the lack of open channels in 2, crystallites of this compound exhibit a distinct and selective absorption of NH(3), with a concomitant color change from green to blue, indicating substantial network flexibility and dynamics with regards to gas transport.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号