首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   3篇
化学   40篇
晶体学   1篇
力学   1篇
数学   5篇
物理学   6篇
  2020年   1篇
  2018年   2篇
  2016年   2篇
  2015年   1篇
  2013年   1篇
  2012年   6篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2004年   7篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1998年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1976年   1篇
  1940年   1篇
排序方式: 共有53条查询结果,搜索用时 31 毫秒
1.
To achieve efficient proton pumping in the light-driven proton pump bacteriorhodopsin (bR), the protein must be tightly coupled to the retinal to rapidly convert retinal isomerization into protein structural rearrangements. Methyl group dynamics of bR embedded in lipid nanodiscs were determined in the dark-adapted state, and were found to be mostly well ordered at the cytosolic side. Methyl groups in the M145A mutant of bR, which displays only 10 % residual proton pumping activity, are less well ordered, suggesting a link between side-chain dynamics on the cytosolic side of the bR cavity and proton pumping activity. In addition, slow conformational exchange, attributed to low frequency motions of aromatic rings, was indirectly observed for residues on the extracellular side of the bR cavity. This may be related to reorganization of the water network. These observations provide a detailed picture of previously undescribed equilibrium dynamics on different time scales for ground-state bR.  相似文献   
2.
3.
Kinetic Calculations for the Formation of Chloro-Bromo-Iodo-Osmates(IV) Rate constants of formation and ligand exchange reactions of mixed hexahaloosmates(IV) of the type [OsClxBryI6?x?y]2?, x + y = 2?5, are computable taking into account the relative cis- (f = 1, f = 1.75, f ≈? 6) and trans-effects (f = 1, f = 6, f ≈? 103) of the ligands as well as statistic factors. Using this kinetic data concentration-time diagrams are calculated for reactions including several parallel and consecutive steps. They agree well with the experimentally determined distribution of products in the reaction mixtures. For the preparation of particular mixed ligand complexes the best way of synthesis and maximum yield can be precalculated.  相似文献   
4.
5.
Preparation of Pentahalopyridineosmates(IV) in Nonpolar Solvents The reaction of hexahaloosmates(IV) with pyridine in nonpolar solvents gives pentahalopyridineosmates(IV) in good yield. Using this method [OsI5py]? is prepared for the first time. It could not be obtained by substitution reactions or photolysis of [OsI6]2? in pyridine. The new complex is characterized by electronic and vibrational spectroscopy.  相似文献   
6.
7.
K Singh  GK Sandhu  BS Lark  SP Sud 《Pramana》2002,58(3):521-528
Molar extinction coefficients of some carbohydrates viz. l-arabinose (C5H10O5), d-glucose (C6H12O6), d-mannose (C6H12O6), d-galactose (C6H12O6), d(-) fructose (C6H12O6) and maltose (C12H24O12) in aqueous solutions have been determined at 81, 356, 511, 662, 1173 and 1332 keV by gamma ray transmission method in a narrow beam good geometry set-up. These coefficients have been found to depend upon the photon energy following a 4-parameter polynomial. These extinction coefficients for different sugars having the same molecular formula have same values varying within experimental uncertainty. Within concentration ranges studied, Beer-Lambert law is obeyed very well.  相似文献   
8.
Herein, we present the peptide‐guided assembly of complementary fragments of designed armadillo repeat proteins (dArmRPs) to create proteins that bind peptides not only with high affinity but also with good selectivity. We recently demonstrated that complementary N‐ and C‐terminal fragments of dArmRPs form high‐affinity complexes that resemble the structure of the full‐length protein, and that these complexes bind their target peptides. We now demonstrate that dArmRPs can be split such that the fragments assemble only in the presence of a templating peptide, and that fragment mixtures enrich the combination with the highest affinity for this peptide. The enriched fragment combination discriminates single amino acid variations in the target peptide with high specificity. Our results suggest novel opportunities for the generation of new peptide binders by selection from dArmRP fragment mixtures.  相似文献   
9.
Applying ultrafast vibrational spectroscopy, we find that vibrational energy transport along a helical peptide changes from inefficient but mostly ballistic below approximately 270 K into diffusive and significantly more efficient above. On the basis of molecular dynamics simulations, we attribute this change to the increasing flexibility of the helix above this temperature, similar to the glass transition in proteins. Structural flexibility enhances intramolecular vibrational energy redistribution, thereby refeeding energy into the few vibrational modes that delocalize over large parts of the structure and therefore transport energy efficiently. The paper outlines concepts how one might regulate vibrational energy transport properties in ultrafast photobiological processes, as well as in molecular electronic devices, by engineering the flexibility of their components.  相似文献   
10.
Fragment-based drug design (FBDD) starts with finding fragment-sized compounds that are highly ligand efficient and can serve as a core moiety for developing high-affinity leads. Although the core-bound structure of a protein facilitates the construction of leads, effective design is far from straightforward. We show that protein mapping, a computational method developed to find binding hot spots and implemented as the FTMap server, provides information that complements the fragment screening results and can drive the evolution of core fragments into larger leads with a minimal loss or, in some cases, even a gain in ligand efficiency. The method places small molecular probes, the size of organic solvents, on a dense grid around the protein and identifies the hot spots as consensus clusters formed by clusters of several probes. The hot spots are ranked based on the number of probe clusters, which predicts the binding propensity of the subsites and hence their importance for drug design. Accordingly, with a single exception the main hot spot identified by FTMap binds the core compound found by fragment screening. The most useful information is provided by the neighboring secondary hot spots, indicating the regions where the core can be extended to increase its affinity. To quantify this information, we calculate the density of probes from mapping, which describes the binding propensity at each point, and show that the change in the correlation between a ligand position and the probe density upon extending or repositioning the core moiety predicts the expected change in ligand efficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号