首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   2篇
  2022年   2篇
排序方式: 共有2条查询结果,搜索用时 31 毫秒
1
1.
Wool is considered to possibly exhibit antibacterial properties due to the ability of wool clothing to reduce the build-up of odor, which arises from the microbial activity of skin microbiota. Indeed, when tested with a widely used agar diffusion plate test method, even wool or other textiles not treated with any antimicrobial agent can be interpreted to show certain antibacterial effects due to the lack of growth under the specimen, as instructed in ISO 20645:2004 standard. Therefore, we analyzed in detail what happens to bacterial cells in contact with untreated wool and cotton fabric placed on inoculated agar plates by counting viable cells attached to the specimens after 1 and 24 h of contact. All wool and several cotton samples showed no growth under the specimen. Nevertheless, it was shown without a doubt that neither textile material kills bacteria or inhibits cell multiplication. A reasonable explanation is that bacterial cells firmly attach to wool fibers forming a biofilm during multiplication. When the specimen was lifted off the nutrient agar surface, the cells in the form of biofilm remained attached to the wool fibers, removing the biomass and resulting in a clear, no growth zone underneath it. By imaging the textile specimens with X-ray microtomography, we concluded that the degree of attachment could be dependent on surface topography. The results indicate that certain textiles, in this case, wool, could exhibit antibacterial properties by removing excess bacteria that grow on the textile/skin interface when taken off the body.  相似文献   
2.
For a long time, the production and processing of cowhide was based on the use of chrome tanning. However, the growing problem with chromium waste and its negative impact on human health and the environment prompted the search for more environmentally friendly processes such as vegetable tanning or aldehyde tanning. In the present study, we investigated the DNA-damaging effects induced in HepG2 cells after 24 h exposure to leather samples (cut into 1 × 1 cm2 rectangles) processed with different tanning agents. Our main objective was to determine which tanning procedure resulted in the highest DNA instability. The extent of treatment-induced DNA damage was determined using the alkaline comet assay. All tanning processes used in leather processing caused primary DNA damage in HepG2 cells compared to untreated cells. The effects measured in the exposed cells indicate that the leaching of potentially genotoxic chemicals from the same surface is variable and was highest after vegetable tanning, followed by synthetic tanning and chrome tanning. These results could be due to the complex composition of the vegetable and synthetic tanning agents. Despite all limitations, these preliminary results could be useful to gain a general insight into the genotoxic potential of the processes used in the processing of natural leather and to plan future experiments with more specific cell or tissue models.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号