首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   2篇
化学   27篇
数学   2篇
物理学   22篇
  2023年   2篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2016年   2篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   5篇
  2008年   1篇
  2007年   3篇
  2006年   4篇
  2005年   4篇
  2004年   1篇
  2003年   4篇
  2002年   3篇
  2000年   1篇
  1999年   1篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
排序方式: 共有51条查询结果,搜索用时 31 毫秒
1.
We study how the formation of the Kondo compensation cloud influences the dynamical properties of a magnetic impurity that tunnels between two positions in a metal. The Kondo effect dynamically generates a strong tunneling impurity-conduction electron coupling, changes the temperature dependence of the tunneling rate, and may ultimately result in the destruction of the coherent motion of the particle at zero temperature. We find an interesting two-channel Kondo fixed point as well for a vanishing overlap between the electronic states that screen the magnetic impurity. We propose experiments where the predicted features could be observed.  相似文献   
2.
3.
Motivated by the recent experiments of Jamneala et al. [Phys. Rev. Lett. 87, 256804 (2001)] by combining ab initio and renormalization group methods, we study the strongly correlated state of a Cr trimer deposited on gold. Internal orbital fluctuations of the trimer lead to a huge increase of T(K) compared to the single ion Kondo temperature explaining the experimental observation of a zero-bias anomaly for the trimers. The strongly correlated state seems to belong to a new yet hardly explored class of non-Fermi-liquid fixed points.  相似文献   
4.
We use the numerical renormalization group method to calculate the single-particle matrix elements T of the many-body T matrix of the conduction electrons scattered by a magnetic impurity at T=0 temperature. Since T determines both the total and the elastic, spin-diagonal scattering cross sections, we are able to compute the full energy, spin, and magnetic field dependence of the inelastic scattering cross section sigma(inel)(omega). We find an almost linear frequency dependence of sigma(inel)(omega) below the Kondo temperature T(K), which crosses over to a omega(2) behavior only at extremely low energies. Our method can be generalized to other quantum impurity models.  相似文献   
5.
We study a symmetrical double quantum dot (DD) system with strong capacitive interdot coupling using renormalization group methods. The dots are attached to separate leads, and there can be a weak tunneling between them. In the regime where there is a single electron on the DD the low-energy behavior is characterized by an SU(4)-symmetric Fermi liquid theory with entangled spin and charge Kondo correlations and a phase shift pi/4. Application of an external magnetic field gives rise to a large magnetoconductance and a crossover to a purely charge Kondo state in the charge sector with SU(2) symmetry. In a four-lead setup we find perfectly spin-polarized transmission.  相似文献   
6.
Motivated by recent experiments on interacting cold atoms, we analyze interaction quenches in Luttinger liquids (LLs), where the interaction is ramped from zero to a finite value within a finite time. The fermionic single particle density matrix reveals several regions of spatial and temporal coordinates relative to the quench time, termed as Fermi liquid, sudden quench LL, adiabatic LL regime, and a LL regime with a time-dependent exponent. The various regimes can also be observed in the momentum distribution of the fermions, directly accessible through time of flight experiments. Most of our results apply to arbitrary quench protocols.  相似文献   
7.
We describe a study of the influence of a dose rate, i.e. light intensity or photon flux, on the efficiency of induction of a loss of integrity of plasma membranes of live cells in culture. The influence of a photon flux on the size of the light dose, which was capable of causing lethal effects, was measured in an experimental system where singlet oxygen was generated exclusively outside of live cells by ruthenium(II) phenantroline complex. Instantaneous, sensitive detection of a loss of integrity of a plasma membrane was achieved by fluorescence confocal imaging of the entry of this complex into a cell interior. We demonstrate that the size of the lethal dose of light is directly proportional to the intensity of the exciting light. Thus, the probability of a photon of the exciting light inflicting photosensitized damage on plasma membranes diminishes with increasing density of the incident photons.  相似文献   
8.
The synthesis and properties of superhydrophobic surfaces based on binary surface topography made of zinc oxide (ZnO) microrod-decorated micropatterns are reported. ZnO is intrinsically hydrophilic but can be utilized to create hydrophobic surfaces by creating artificial roughness via microstructuring. Micron scale patterns consisting of nanocrystalline ZnO seed particles were applied to glass substrates with a modified ink-jet printer. Microrods were then grown on the patterns by a hydrothermal process without any further chemical modification. Water contact angle (WCA)(1) up to 153° was achieved. Different micro array patterned surfaces with varying response of static contact angle or sessile droplet analysis are reported.  相似文献   
9.
We discuss the realization of the quantum-critical non-Fermi-liquid state, originally discovered within the two-impurity Kondo model, in double-quantum-dot systems. Contrary to common belief, the corresponding fixed point is robust against particle-hole and various other asymmetries and is unstable only to charge transfer between the two dots. We propose an experimental setup where such charge transfer processes are suppressed, allowing a controlled approach to the quantum-critical state. We also discuss transport and scaling properties in the vicinity of the critical point.  相似文献   
10.
Bismuth containing hybrid molecular ferroelectrics are receiving tremendous attention in recent years owing to their stable and non-toxic composition. However, these perovskite-like structures are primarily limited to ammonium cations. Herein, we report a new phosphonium based discrete perovskite-like hybrid ferroelectric with a formula [Me(Ph)3P]3[Bi2Br9] ( MTPBB ) and its mechanical energy harvesting capability. The Polarization-Electric field (P-E) measurements resulted in a well-defined ferroelectric hysteresis loop with a remnant polarization value of 2.1 μC cm−2. Piezoresponse force microscopy experiments enabled visualization of the ferroelectric domain structure and evaluation of the piezoelectric strain coefficient (d33) for an MTPBB single crystal and thin film sample. Furthermore, flexible devices incorporating MTPBB in polydimethylsiloxane (PDMS) matrix at various concentrations were fabricated and explored for their mechanical energy harvesting properties. The champion device with 20 wt % of MTPBB in PDMS rendered a maximum peak-to-peak open-circuit voltage of 22.9 V and a maximum power density of 7 μW cm−2 at an optimal load of 4 MΩ. Moreover, the potential of MTPBB -based devices in low power electronics was demonstrated by storing the harvested energy in various electrolytic capacitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号