首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   7篇
化学   73篇
力学   6篇
数学   9篇
物理学   7篇
  2024年   3篇
  2023年   3篇
  2022年   12篇
  2021年   16篇
  2020年   6篇
  2019年   4篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   6篇
  2011年   7篇
  2010年   4篇
  2009年   3篇
  2008年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1995年   2篇
  1984年   1篇
排序方式: 共有95条查询结果,搜索用时 31 毫秒
1.
The development of organic electron acceptor materials is one of the key factors for realizing high-performance organic solar cells (OSCs). Nonfullerene electron acceptors, compared to traditional fullerene acceptor materials, have gained much impetus owing to their better optoelectronic tunabilities and lower cost, as well as higher stability. Therefore, 5 three-dimensional (3D) cross-shaped acceptor materials having a spirobifullerene core flanked with 2,1,3-benzothiadiazole are designed from a recently synthesized highly efficient acceptor molecule SF(BR) 4 and are investigated in detail with regard to their use as acceptor molecules in OSCs. The density functional theory (DFT) and time-dependent DFT (TDDFT) calculations have been performed for the estimation of frontier molecular orbital (FMO) analysis, density of states analysis, reorganization energies of electron and hole, dipole moment, open-circuit voltage, photo-physical characteristics, and transition density matrix analysis. In addition, the structure-property relationship is studied, and the influence of end-capped acceptor modifications on photovoltaic, photo-physical, and electronic properties of newly selected molecules ( H1-H5 ) is calculated and compared with reference ( R ) acceptor molecule SF(BR) 4 . The structural tailoring at terminals was found to effectively tune the FMO band gap, energy levels, absorption spectra, open-circuit voltage, reorganization energy, and binding energy value in selected molecules H1 to H5 . The 3D cross-shaped molecules H1 to H5 suppress the intermolecular aggregation in PTB7-Th blend, which leads to high efficiency of acceptor material H1 to H5 in OSCs. Consequently, better optoelectronic properties are achieved from designed molecules H1 to H5 . It is proposed that the conceptualized molecules are superior than highly efficient spirobifullerene core-based SF(BR) 4 acceptor molecules and, thus, are recommended to experiments for future developments of highly efficient solar cells.  相似文献   
2.
The carbapenem class of β-lactams has been optimized against Gram-negative bacteria producing extended-spectrum β-lactamases by introducing substituents at position C2. Carbapenems are currently investigated for the treatment of tuberculosis as these drugs are potent covalent inhibitors of l,d -transpeptidases involved in mycobacterial cell wall assembly. The optimization of carbapenems for inactivation of these unusual targets is sought herein by exploiting the nucleophilicity of the C8 hydroxyl group to introduce chemical diversity. As β-lactams are structure analogs of peptidoglycan precursors, the substituents were chosen to increase similarity between the drug and the substrate. Fourteen peptido-carbapenems were efficiently synthesized. They were more effective than the reference drug, meropenem, owing to the positive impact of a phenethylthio substituent introduced at position C2 but the peptidomimetics added at position C8 did not further improve the activity. Thus, position C8 can be modified to modulate the pharmacokinetic properties of highly efficient carbapenems.  相似文献   
3.
4.
A numerical analysis is presented for buoyancy driven flow of a Newtonian fluid contained in a two dimensional (R, ) hemispherical enclosure for high Rayleigh (Ra) numbers. It is assumed that the flow is driven by the uniformly distributed internal heat sources within the enclosure. All walls of the cavity are maintained at a constant temperature. Finite volume based SIMPLER algorithm has been used for the present analysis. Discretised governing equations, in primitive variables, are solved by a combination of Three Diagonal Matrix Algorithm (TDMA) and Point Successive Overrelaxation (PSOR) method. A benchmark solution prepared for a Ra number range of 107 to 1012 and Prandtl (Pr) number 7.0, shows an excellent agreement with the experimental results obtained from the open literature.  相似文献   
5.
The pathogenesis of colorectal cancer is a multifactorial process. Dysbiosis and the overexpression of COX-2 and LDHA are important effectors in the initiation and development of the disease through chromosomal instability, PGE2 biosynthesis, and induction of the Warburg effect, respectively. Herein, we report the in vitro testing of some new quinoxalinone and quinazolinone Schiff’s bases as: antibacterial, COX-2 and LDHA inhibitors, and anticolorectal agents on HCT-116 and LoVo cells. Moreover, molecular docking and SAR analyses were performed to identify the structural features contributing to the biological activities. Among the synthesized molecules, the most active cytotoxic agent, (6d) was also a COX-2 inhibitor. In silico ADMET studies predicted that (6d) would have high Caco-2 permeability, and %HIA (99.58%), with low BBB permeability, zero hepatotoxicity, and zero risk of sudden cardiac arrest, or mutagenicity. Further, (6d) is not a potential P-gp substrate, instead, it is a possible P-gpI and II inhibitor, therefore, it can prevent or reverse the multidrug resistance of the anticancer drugs. Collectively, (6d) can be considered as a promising lead suitable for further optimization to develop anti-CRC agents or glycoproteins inhibitors.  相似文献   
6.
Summary Titanosilicalite-1 (TS-1) in combination with sulfated zirconia efficiently catalyzes the epoxidation of 1-octene with aqueous hydrogen peroxide. The presence of both octahedral zirconium and sulfate species in the catalysts enhances the epoxidation rates.  相似文献   
7.
A simple biological method for the synthesis of gold nanoparticles (AuNPs) using Cassia auriculata aqueous leaf extract has been carried out in the present study. The reduction of auric chloride led to the formation of AuNPs within 10 min at room temperature (28°C), suggesting a higher reaction rate than chemical methods involved in the synthesis. The size, shape and elemental analysis were carried out using X-ray diffraction, TEM, SEM-EDAX, FT-IR and visible absorption spectroscopy. Stable, triangular and spherical crystalline AuNPs with well-defined dimensions of average size of 15-25 nm were synthesized using C. auriculata. Effect of pH was also studied to check the stability of AuNPs. The main aim of the investigation is to synthesize AuNPs using antidiabetic potent medicinal plant. The stabilizing and reducing molecules of nanoparticles may promote anti-hyperglycemic if tested further.  相似文献   
8.
The purpose of the present study is to determine the elemental composition of Pakistani cement brands using calibration-free laser induced breakdown spectroscopy (CF-LIBS) and to compare the obtained results with the other analytical techniques such as, laser ablation – time-of-flight – mass spectrometry (LA-TOF-MS), energy dispersive X-ray spectrometry (EDX), X-ray fluorescence spectroscopy (XRF) and proton induced X-ray emission spectrometry (PIXE). Compositional results reveal that all the cement brands are mainly composed of calcium, silicon, iron, aluminum, magnesium, potassium, sodium, titanium, lithium and strontium with varying concentrations. The compositions obtained by LIBS and LA-TOF-MS are in good agreement with results obtained by the other standard techniques and demonstrate the potential use of LIBS for the online monitoring of industrial cement production.  相似文献   
9.
Research on Chemical Intermediates - The reactions of aldehydes and barbituric acid at low temperatures in magnetized water, as a green-promoting medium, provides 9-substituted-9H-diuracilopyrans...  相似文献   
10.
Molecularly imprinted polymer (MIP) has gained wide interest among researchers due to its unique molecular recognition of the template that is suitable as a drug carrier. Therefore, the preparation and formulation of the MIP are significant to suit the needs of the intended use. Due to its significance in drug delivery, this review aims to highlight various methods in the preparation of MIP, the composition for both controlled and stimuli-responsive drug delivery systems, and the release mechanism of the drugs. In drug delivery systems, MIP should have a sustained release performance as well as flexibility in surface modification for targeted delivery via a range of stimuli-responses, including  external stimuli (magnetic, light) and internal stimuli (pH, temperature, redox, biological). The properties of sustained release and targeted delivery of the MIP can improve the drug's therapeutic efficacy as well as the breakthrough for the tumor targeting application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号