首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   3篇
化学   12篇
晶体学   2篇
数学   2篇
物理学   27篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   4篇
  2012年   5篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
排序方式: 共有43条查询结果,搜索用时 31 毫秒
1.
The degradation pathways of highly active [Cp*Ir(κ2-N,N-R-pica)Cl] catalysts (pica=picolinamidate; 1 R=H, 2 R=Me) for formic acid (FA) dehydrogenation were investigated by NMR spectroscopy and DFT calculations. Under acidic conditions (1 equiv. of HNO3), 2 undergoes partial protonation of the amide moiety, inducing rapid κ2-N,N to κ2-N,O ligand isomerization. Consistently, DFT modeling on the simpler complex 1 showed that the κ2-N,N key intermediate of FA dehydrogenation ( INH ), bearing a N-protonated pica, can easily transform into the κ2-N,O analogue ( INH2 ; ΔG≈11 kcal mol−1, ΔG ≈−5 kcal mol−1). Intramolecular hydrogen liberation from INH2 is predicted to be rather prohibitive (ΔG≈26 kcal mol−1, ΔG≈23 kcal mol−1), indicating that FA dehydrogenation should involve mostly κ2-N,N intermediates, at least at relatively high pH. Under FA dehydrogenation conditions, 2 was progressively consumed, and the vast majority of the Ir centers (58 %) were eventually found in the form of Cp*-complexes with a pyridine-amine ligand. This likely derived from hydrogenation of the pyridine-carboxiamide via a hemiaminal intermediate, which could also be detected. Clear evidence for ligand hydrogenation being the main degradation pathway also for 1 was obtained, as further confirmed by spectroscopic and catalytic tests on the independently synthesized degradation product 1 c . DFT calculations confirmed that this side reaction is kinetically and thermodynamically accessible.  相似文献   
2.
Repetitive guanine‐rich nucleic acid sequences play a crucial role in maintaining genome stability and the cell life cycle and represent potential targets for regulatory drugs. Recently, it has been demonstrated that guanine‐based ligands with a porphyrin core can be used as markers of G‐quadruplex assemblies in cell tissues. Herein, model systems of guanine‐based ligands are explored by DFT methods. The energies of formation of modified guanine tetrads and those of modified tetrads stacked on the top of natural guanine tetrads have been calculated. The interaction energy has been decomposed into contributions from hydrogen bonding, stacking, and ion coordination and a twist–rise potential energy scan has been performed to find the individual local minima. Energy decomposition analysis reveals the impact of various substituents (F, Cl, Br, I, Me, NMe2) on individual energy terms. In addition, cooperative reinforcement in forming the modified and stacked tetrads, as well as the frontier orbitals participating in the hydrogen‐bonding framework involving the HOMO–LUMO gap between the occupied σHOMO on the proton‐accepting C=O and =N? groups and unoccupied σLUMO on the N?H groups, has been studied. The investigated systems are demonstrated to have a potential in ligand development, mainly due to stacking enhancement compared with natural guanine, which is used as a reference.  相似文献   
3.
We introduce a microscopic model for the dynamics of the order book to study how the lack of liquidity influences price fluctuations. We use the average density of the stored orders (granularity g) as a proxy for liquidity. This leads to a Price Impact Surface which depends on both volume ω and g. The dependence on the volume (averaged over the granularity) of the Price Impact Surface is found to be a concave power law function 〈φ(ω,g)〉g~ωδ with δ≈0.59. Instead the dependence on the granularity is φ(ω,g|ω)~gα with α≈-1, showing a divergence of price fluctuations in the limit g→0. Moreover, even in intermediate situations of finite liquidity, this effect can be very large and it is a natural candidate for understanding the origin of large price fluctuations.  相似文献   
4.
We have studied the extent of the single-mode operation regime for high symmetric index-guiding quasicrystal fibers by analyzing the validity of the effective V parameter, which is used to determine the single-mode cutoff for photonic crystal fibers. We demonstrate that this parameter can also be applied, without any approximations, to a high symmetric 12-fold Stampfli quasicrystal made of silica. We explain this result in terms of both intrinsic-quasicrystal defect and photonic crystal constituent units. We also analyze the extent of the second-order mode operation to further confirm the cutoff between the single- and multimode operations.  相似文献   
5.

Abstract  

The conformational arrangement of an all-threo bis-THF diol compound, synthesized through the RuO4-catalysed oxidative bis-cyclization of farnesyl acetate, was determined via crystallographic analysis and detailed 2D-NMR solution studies. The bis-THF compound crystallizes in the orthorhombic Pbca space group, with unit cell parameters a = 10.496(1), b = 17.974(1), c = 19.777(2) ?, Z = 8. The final refinement converged to R 1 = 0.0484 for 4714 independent observed reflections having I > 2σ(I). There is a good agreement between the solution molecular conformation determined by 2D-NMR and the X-ray molecular conformation. The molecule adopts a folded, horse shoe-type conformation both in solution and in the crystal, that suggests aptitude to coordinate cations. Additionally, in the crystals, the molecular conformation is stabilized by intramolecular and intermolecular H-bonding.  相似文献   
6.
The Gram-negative encapsulated bacterium Neisseria meningitidis type A (MenA) is a major cause of meningitis in developing countries, especially in the sub-Saharan region of Africa. The development and manufacture of an efficient glycoconjugate vaccine against MenA is greatly hampered by the poor hydrolytic stability of its capsular polysaccharide, consisting of (1→6)-linked 2-acetamido-2-deoxy-α-d-mannopyranosyl phosphate repeating units. The replacement of the ring oxygen with a methylene group to get a carbocyclic analogue leads to the loss of the acetalic character of the phosphodiester and consequently to the enhancement of its chemical stability. Here we report the synthesis of oligomers (mono-, di- and trisaccharide) of carba-N-acetylmannosamine-1-O-phosphate as candidates for stabilized analogues of the corresponding fragments of MenA capsular polysaccharide. Each of the synthesized compounds contains a phosphodiester-linked aminopropyl spacer at its reducing end to allow for protein conjugation. The inhibition abilities of the synthetic molecules were investigated by a competitive ELISA assay, showing that only the carba-disaccharide is recognized by a polyclonal anti-MenA serum with an affinity similar to a native MenA oligosaccharide with average polymerization degree of 3.  相似文献   
7.
The formation of guanine quadruplexes (GQ) in DNA is crucial in telomere homeostasis and regulation of gene expression. Pollution metals can interfere with these DNA superstructures upon coordination. In this work, we study the affinity of the internal GQ channel site towards alkaline earth metal (Mg2+, Ca2+, Sr2+, and Ba2+), and (post-)transition metal (Zn2+, Cd2+, Hg2+, and Pb2+) cations using density functional theory computations. We find that divalent cations generally bind to the GQ cavity with a higher affinity than conventional monovalent cations (e. g. K+). Importantly, we establish the nature of the cation-GQ interaction and highlight the relationship between ionic and nuclear charge, and the electrostatic and covalent interactions. The covalent interaction strength plays an important role in the cation affinity and can be traced back to the relative stabilization of cations’ unoccupied atomic orbitals. Overall, our findings contribute to a deeper understanding of how pollution metals could induce genomic instability.  相似文献   
8.
9.
10.
Measuring accurate translational self-diffusion coefficients (Dt) by NMR techniques with modern spectrometers has become rather routine. In contrast, the derivation of reliable molecular information therefrom still remains a nontrivial task. In this paper, two established approaches to estimating molecular size in terms of hydrodynamic volume (VH) or molecular weight (M) are compared. Ad hoc designed experiments allowed the critical aspects of their application to be explored by translating relatively complex theoretical principles into practical take-home messages. For instance, comparing the Dt values of three isosteric Cp2MCl2 complexes (Cp=cyclopentadienyl, M=Ti, Zr, Hf), having significantly different molecular mass, provided an empirical demonstration that VH is the critical molecular property affecting Dt. This central concept served to clarify the assumptions behind the derivation of Dt=ƒ(M) power laws from the Stokes–Einstein equation. Some pitfalls in establishing log (Dt) versus log (M) linear correlations for a set of species have been highlighted by further investigations of selected examples. The effectiveness of the Stokes–Einstein equation itself in describing the aggregation or polymerization of differently shaped species has been explored by comparing, for example, a ball-shaped silsesquioxane cage with its cigar-like dimeric form, or styrene with polystyrene macromolecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号