首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
化学   16篇
物理学   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
排序方式: 共有18条查询结果,搜索用时 171 毫秒
1.
Molecular modification of dye-sensitized, mesoporous TiO2 electrodes changes their electronic properties. We show that the open-circuit voltage (V(oc)) of dye-sensitized solar cells varies linearly with the dipole moment of coadsorbed phosphonic, benzoic, and dicarboxylic acid derivatives. A similar dependence is observed for the short-circuit current density (I(sc)). Photovoltage spectroscopy measurements show a shift of the signal onset as a function of dipole moment. We explain the dipole dependence of the V(oc) in terms of a TiO2 conduction band shift with respect to the redox potential of the electrolyte, which is partially followed by the energy level of the dye. The I(sc) shift is explained by a dipole-dependent driving force for the electron current and a dipole-dependent recombination current.  相似文献   
2.
A simple microwave irradiation method for the large-scale synthesis of submicrometer-sized TiO2 rods at normal atmospheric pressure and the boiling temperature of the solvent is demonstrated. It is emphasized that only 1-3 min of microwave irradiation is adequate to react tetra-isopropyl orthotitanate with ethylene glycol to produce rods of titanium glycolate [TG] with diameters of approximately 0.4 microm and lengths up to 5 microm. The as-formed TG rods, followed by calcination under air for 2 h, fabricated anatase (500 degrees C) and rutile (900 degrees C) titania without changing their rod-shaped morphology. The crystallinity, structure, morphology, and thermal analysis are carried out by several techniques. A mechanism based on microwave superheating phenomena is presented with the support of previous reports and several control experiments.  相似文献   
3.
Carboxylated pyrrole (Pyr, a index)- and carbazole (Cbz, b index)-containing monomers 6-7a/b and 9a/b have been readily synthesized from the monobenzyl ester of L-glutamic acid and triamine 2 using Clauson-Kaas and amide coupling reactions. In contrast to Pyr-containing compounds 6-7a, and 9a, the three Cbz-containing monomers 6-7b, and 9b have been found electroactive and were successfully electropolymerized on a Pt electrode resulting in the deposition of corresponding insoluble electroconducting polyCOOH polyCbz-films poly(6-7b) and poly(9b).  相似文献   
4.
The mechanochemical solid-state adsorption of the cationic dye rhodamine-6G (R6G) by montmorillonite was investigated by XRD and simultaneous DTA-TG. Five different mixtures of R6G and montmorillonite were investigated. They contained 10, 20, 35, 50 and 100 mmol R6G per 100 g clay. The solid R6G was ground with the clay for five minutes. Mixtures were ground both in the absence of water (dry grinding) and with the adding of drops of water periodically, (wet grinding). There were no differences between samples obtained by wet or dry grinding. X-ray and DTA data were compared with those of R6G-montmorillonite obtained from aqueous suspensions. The mechanochemical products were different from those obtained from aqueous suspensions. The X-ray and DTA studies suggest that the mechanochemical adsorption of organic cations takes place on the external surfaces of the clay whereas in suspensions the adsorption takes place into the interlayer space. In the latter case the final stages of oxidation occur in temperatures higher than those of the neat dye whereas in the former they occur at lower temperatures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
5.
In this paper we present a new type of optical fiber aiming to radially polarize the electrical field. This special device is composed of a tapered fiber having a classical core while on top of its external surface, radially oriented nanorods are disposed. The tails of the propagated wave are interacting with those radially oriented nanorods. This interaction performs the polarization of the propagated mode into a radial polarization.  相似文献   
6.
Quantum‐dot‐sensitized solar cells (QDSCs) are a promising low‐cost alternative to existing photovoltaic technologies such as crystalline silicon and thin inorganic films. The absorption spectrum of quantum dots (QDs) can be tailored by controlling their size, and QDs can be produced by low‐cost methods. Nanostructures such as mesoporous films, nanorods, nanowires, nanotubes and nanosheets with high microscopic surface area, redox electrolytes and solid‐state hole conductors are borrowed from standard dye‐sensitized solar cells (DSCs) to fabricate electron conductor/QD monolayer/hole conductor junctions with high optical absorbance. Herein we focus on recent developments in the field of mono‐ and polydisperse QDSCs. Stability issues are adressed, coating methods are presented, performance is reviewed and special emphasis is given to the importance of energy‐level alignment to increase the light to electric power conversion efficiency.  相似文献   
7.
Layers of porous TiO(2) fabricated by electrophoretic deposition at different temperatures with subsequent sintering in air were investigated by transient photocurrent measurements in aqueous electrolyte. The effective diffusion coefficient of excess electrons changed between 1.6 x 10(-5) and 1.4 x 10(-4) cm(2)/s depending strongly on the solution temperature during the TiO(2) layer deposition. Characterization, in terms of average degree of preferred orientation, shows that low deposition temperature results in orientation of the nanocrystals forming the porous film. Consequently, the increase of effective diffusion coefficient is attributed to a higher degree of ordering in the nanoporous TiO(2) layer.  相似文献   
8.
The electron diffusion coefficient at varying porosity has been determined in a series of nanostructured TiO(2) films of different initial thicknesses. The porosity was changed by applying different pressures prior to sintering, thereby modifying the internal morphology of the films though not their chemical and surface conditions. A systematic increase of the effective diffusion coefficient was observed as the porosity was decreased, indicating the improvement of the internal connectivity of the network of nanoparticles. The experimental results have been rationalized using percolation theory. First of all, applying a power law dependence, the diffusion coefficient as a function of porosity from different films collapsed in a single master curve. In addition, application of the models of effective medium approximation (EMA) allows us to compare the experimental results with previous data from Monte Carlo simulation. The different data show a similar dependence in agreement with the EMA predictions, indicating that the geometrical effect of electron transport due to variation of porous morphology in TiO(2) nanoparticulate networks is well described by the percolation concept.  相似文献   
9.
The adsorption of the anionic dye congo-red (CR) by Na-, Cs-, Mg-, Al- and Fe-montmorillonite was studied by simultaneous DTA-TG. Thermal analysis curves of adsorbed CR were compared with those of neat CR. The oxidation of neat CR is completed below 570°C. Thermal analysis curves of adsorbed CR show three regions representing dehydration of the clay, oxidation of the organic dye and dehydroxylation of the clay together with the oxidation of residual organic matter. The oxidation of the dye begins at about 250°C with the transformation of organic H atoms into water and carbon into charcoal. Two types of charcoal are obtained, low-temperature and high-temperature stable charcoal. The former gives rise to an exothermic peak in the second region of the thermal analysis and the latter in the third region. The exchangeable metallic cation determines the ratio between the low-temperature and high-temperature stable charcoal, which is formed. With increasing acidity of the exchangeable metallic cation higher amounts of high-temperature stable charcoal are obtained. It was suggested that aromatic compounds p bonded to the oxygen plane of the clay framework are converted into charcoal, which is burnt at about 550-700°C. With increasing surface acidity of the clay more species of CR are protonated. Only protonated dye species can form p bonds with oxygen plane and are converted to high-temperature stable charcoal during the thermal analysis. The thermal behavior of the dye complex of Cu-montmorillonite is different probably due to the catalytic effect of Cu. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
10.
The open-circuit voltage (V(oc)) dependence on the illumination intensity (phi0) under steady-state conditions in both bare and coated (blocked) nanostructured TiO2 dye-sensitized solar cells (DSSCs) is analyzed. This analysis is based on a recently reported model [Bisquert, J.; Zaban, A.; Salvador, P. J. Phys. Chem. B 2002, 106, 8774] which describes the rate of interfacial electron transfer from the conduction band of TiO2 to acceptor electrolyte levels (recombination). The model involves two possible mechanisms: (1) direct, isoenergetic electron injection from the conduction band and (2) a two-step process involving inelastic electron trapping by band-gap surface states and subsequent isoenergetic transfer of trapped electrons to electrolyte levels. By considering the variation of V(oc) over a wide range of illumination intensities (10(10) < phi0 < 10(16) cm(-2) s(-1)), three major regions with different values of dV(oc)/d phi0 can be distinguished and interpreted. At the lower illumination intensities, recombination mainly involves localized band-gap, deep traps at about 0.6 eV below the conduction band edge; at intermediate photon fluxes, recombination is apparently controlled by a tail of shallow traps, while, for high enough phi0 values, conduction band states control the recombination process. The high phi0 region is characterized by a slope of dV(oc)/d log phi0 congruent with 60 mV, which indicates a recombination of first order in the free electron concentration. The study, which was extended to different solar cells, shows that the energy of the deep traps seems to be an intrinsic property of the nanostructured TiO2 material, while their concentration and also the density ([symbol: see text]t approximately 10(18)-10(19) cm(-3)) and distribution of shallow traps, which strongly affects the shape of the V(oc) vs phi0 curves, change from sample to sample and are quite sensitive to the electrode preparation. The influence of the back-reaction of electrons from the fluorine-doped tin oxide (FTO) conducting glass substrate with electrolyte tri-iodide ions on the V(oc) vs phi0 dependence characteristic of the DSSC is analyzed. It is concluded that this back-reaction route can be neglected, even at low light intensities, when its rate (exchange current density, j0), which can vary over 4 orders of magnitude depending on the type of FTO used, is low enough (j0 < or = 10(-8)A cm(-2)). The comparison of V(oc) vs phi0 measurements corresponding to different DSSCs with and without blocking of the FTO-electrolyte contact supports this conclusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号