首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   293篇
  免费   24篇
  国内免费   2篇
化学   264篇
晶体学   5篇
数学   19篇
物理学   31篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2020年   5篇
  2019年   2篇
  2018年   5篇
  2016年   10篇
  2015年   9篇
  2014年   13篇
  2013年   13篇
  2012年   21篇
  2011年   33篇
  2010年   10篇
  2009年   6篇
  2008年   20篇
  2007年   14篇
  2006年   18篇
  2005年   22篇
  2004年   14篇
  2003年   12篇
  2002年   14篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1997年   5篇
  1996年   2篇
  1994年   4篇
  1992年   5篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   5篇
  1985年   4篇
  1984年   1篇
  1982年   5篇
  1981年   1篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1970年   3篇
  1969年   1篇
  1967年   1篇
排序方式: 共有319条查询结果,搜索用时 15 毫秒
1.
2.
3.
Dithiazolylbenzothiadiazoles easily obtained have high electron affinity and the FET device of a trifluoromethylphenyl derivative exhibited a good n-type performance with high electron mobility.  相似文献   
4.
We have recently demonstrated a one-step process to fabricate silver-polypyrrole (PPy) coaxial nanocables (Chen, A.; Wang, H.; Li, X. Chem. Commun. 2005, 14, 1863). The formation process of silver-PPy coaxial nanocables is discussed in this article. It was found from the results of TEM and SEM images that large numbers of silver atoms were formed when AgNO3 was added to a pyrrole solution. Then silver atoms transform to silver-PPy nanosheets with regular morphology, which will connect together to be more stable. Silver-PPy nanocables will be able to grow at the expense of the silver-PPy nanosheets. Poly(vinylpyrrolidone) (PVP) plays crucial roles in this process: as a capping agent to form silver nanowires, and as a dispersant of pyrrole monomers, which can influence the site at which pyrrole monomer exists. On the basis of experimental analysis, the possible mechanism was proposed. Because of the effect of PVP, silver ions and pyrrole monomers are apt to be adsorbed at the [111] and [100] facets of silver nanosheets, respectively. Obvious polymerization will take place on the boundary of the [111] and [100] facets. The PPy layer stays stable on the [100] facets. Meanwhile, newly formed silver atoms and silver nanosheets will further ripen and grow on the [111] facets. In a word, the morphology of final products and the formation process are determined by the reaction site between AgNO3 and the pyrrole monomer, which is influenced by PVP.  相似文献   
5.
Cyclopropanes are traditionally prepared by the formal [2+1] addition of carbene or radical based C1 units to alkenes. In contrast, the one-pot intermolecular cyclopropanation of alkanes by redox active C1 units has remained unrealised. Herein, we achieved this process simply by exposing β-aryl propionitriles and C1 radical precursors (N-oxy esters) to base and blue light. The overall process is redox-neutral and a photocatalyst, whether metal- or organic-based, is not required. Our findings support that single electron transfer (SET) from the α-cyano carbanion of the propionitrile to the N-oxy ester is facilitated by blue-light via their electron donor–acceptor (EDA) complex. The α-cyano carbon radical thus formed can then lose a β-proton to form a π-resonance stabilised radical anion that preferentially couples at the benzylic β-position with a decarboxylated C1 radical unit. This new transition metal-free chemistry tolerates both electron rich and electron deficient (hetero)aryl systems, even sulfide or alkene functionality, to afford a range of cis-aryl/cyano cyclopropanes bearing congested tetrasubstituted quaternary carbons.  相似文献   
6.
The total synthesis of 7,10‐epimer of the proposed structure of amphidinolide N was accomplished. The requisite chiral C17–C29 subunit was assembled stereoselectively via Keck allylation, Shi epoxidation, diastereoselective 1,3‐reduction, and a later oxidative synthesis of the THF framework. The C1–C13 and C17–C29 subunits were successfully coupled using a Enders RAMP “linchpin” as the C14–C16 three carbon unit, thereby controlling the chirality at C14 and C16. The labile allyl epoxy moiety was successfully constructed by Grieco–Nishizawa olefination at a final stage of the synthesis.  相似文献   
7.
8.
This review article summarizes our recent researches for molecular design of polyoxometalates (POMs) and their related compounds for environmentally-friendly functional group transformations. The divacant POM [γ-SiW10O34(H2O)2]4− exhibits high catalytic performance for mono-oxygenation-type reactions including epoxidation of olefins and allylic alcohols, sulfoxidation, and hydroxylation of organosilanes with H2O2. We have successfully synthesized several POM-based molecular catalysts (metal-substituted POMs) with controlled active sites by the introduction of metal species into the divacant POM as a “structural motif”. These molecular catalysts can efficiently activate H2O2 (vanadium-substituted POM for epoxidation) and alkynes (copper-substituted POM for click reaction and oxidative homocoupling of alkynes). The aluminum-substituted POM exhibits Lewis acidic catalysis for diastereoselective cyclization of (+)-citronellal to (−)-isopulegol. In addition, we have developed POM-based “molecular heterogeneous catalysts” by the “solidification” and “immobilization” of catalytically active POMs.  相似文献   
9.
An oxidative dimerization reaction, involving the three successive steps of oxidation, 6 pi-electrocyclization, and Diels-Alder reaction, has been experimentally and theoretically investigated for the three 2-alkenyl-3-hydroxymethyl-2-cyclohexen-1-one derivatives epoxyquinol 3, epoxyquinone 6, and cyclohexenone 10. Of the sixteen possible modes of the oxidation/6 pi-electrocylization/Diels-Alder reaction cascade for the epoxyquinone 6, and eight for the cyclohexenone 10, only the endo-anti(epoxide)-anti(Me)-hetero and endo-anti(Me)-hetero modes are, respectively, observed, while both endo-anti(epoxide)-anti(Me)-hetero and exo-anti(epoxide)-anti(Me)-homo reaction modes occur with the epoxyquinol 3. Intermolecular hydrogen-bonding is found to be the key cause of formation of both epoxyquinols A and B with 3, although epoxyquinone 6 and cyclohexenone 10 both gave selectively only the epoxyquinol A-type product. In the dimerization of epoxyquinol 3, two monomer 2H-pyrans 5 interact with each other to afford intermediate complex 28 or 29 stabilized by hydrogen-bonding, from which Diels-Alder reaction proceeds. Theoretical calculations have also revealed the differences in the reaction profiles of epoxyquinone 6 and cyclohexenone 10. Namely, the rate-determining step of the former is the Diels-Alder reaction, while that of the latter is the 6 pi-electrocyclization.  相似文献   
10.
Aromatic polyphosphonates of high molecular weights were prepared from phenylphosphonic dichloride and bisphenols having rigid ring structures by the two-phase polycondensation in organic solvent–aqueous alkaline solution system with phase-transfer catalyst at 0°C or below. The effects of reaction solvent and catalyst on the inherent viscosities of the polymers formed are studied. The glass transition temperatures of the polyphosphonates with biphenyl, phenylindane, and diphenylfluorene units are 120, 124, and 188°C, respectively. These polymers are self-extinguishing and are readily soluble in solvents such as N,N-dimethylacetamide, pyridine, tetrahydrofuran, and chloroform. They began to lose weight above 300°C in air. Copolyphosphonates from combinations of bisphenols and phenylphosphonic dichloride are also prepared and characterized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号