首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10120篇
  免费   2238篇
  国内免费   1476篇
化学   7778篇
晶体学   182篇
力学   599篇
综合类   134篇
数学   1061篇
物理学   4080篇
  2024年   43篇
  2023年   310篇
  2022年   454篇
  2021年   576篇
  2020年   619篇
  2019年   584篇
  2018年   478篇
  2017年   419篇
  2016年   560篇
  2015年   677篇
  2014年   731篇
  2013年   849篇
  2012年   1017篇
  2011年   989篇
  2010年   677篇
  2009年   716篇
  2008年   747篇
  2007年   618篇
  2006年   555篇
  2005年   432篇
  2004年   321篇
  2003年   227篇
  2002年   222篇
  2001年   157篇
  2000年   152篇
  1999年   116篇
  1998年   103篇
  1997年   73篇
  1996年   67篇
  1995年   48篇
  1994年   41篇
  1993年   49篇
  1992年   37篇
  1991年   18篇
  1990年   24篇
  1989年   20篇
  1988年   14篇
  1987年   16篇
  1986年   22篇
  1985年   15篇
  1984年   10篇
  1983年   3篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1976年   2篇
  1971年   4篇
  1966年   2篇
  1959年   5篇
  1957年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
From the implementation point of view, the printable magnetic Janus colloidal photonic crystals (CPCs) microspheres are highly desirable. Herein, we developed a dispensing-printing strategy for magnetic Janus CPCs display via a microfluidics-automatic printing system. Monodisperse core/shell colloidal particles and magnetic Fe3O4 nanoparticles precursor serve as inks. Based on the equilibrium of three-phase interfacial tensions, Janus structure is successfully formed, followed by UV irradiation and self-assembly of colloid particle to generate magnetic Janus CPCs microspheres. Notably, this method shows distinct superiority with highly uniform Janus CPCs structure, where the TMPTA/Fe3O4 hemisphere is in the bottom side while CPCs hemisphere is in the top side. Thus, by using Janus CPCs microspheres with two different structural colors as pixel points, a pattern with red flower and green leaf is achieved. Moreover, 1D linear Janus CPCs pattern encapsulated by hydrogel is also fabricated. Both the color and the shape can be changed under the traction of magnets, showing great potentials in flexible smart displays. We believe this work not only offers a new feasible pathway to construct magnetic Janus CPCs patterns by a dispensing-printable fashion, but also provides new opportunities for flexible and smart displays.  相似文献   
2.
Refractory wounds have always been an important issue to healthcare systems, whose healing process is always delayed by multiple factors, including bacterial infections, chronic inflammation, and excessive exudates, etc. Employing multifunctional wound dressings is recognized as an effective strategy to deal with refractory wounds, which has yielded promising outcomes in recent years. Among these advanced wound dressings, fibrous dressings have gained growing attention due to their unique merits. Such wound dressings have demonstrated great potential in delivering theranostic agents, such as antibacterial agents, anti-inflammatory drugs, growth factors, and diagnostic probes, etc., for the purposes of accelerating wound healing. This paper reviews the development of multifunctional fibrous dressings and their applications in treating refractory wounds. The construction approaches of novel fibrous dressing with capabilities of antibacterial, anti-inflammation, exudate management and diagnosis were also introduced. Furthermore, the existing problems and challenges are also discussed briefly.  相似文献   
3.
Three nonfused ring electron acceptors (NFREAs) TTC6,TT-C8T and TT-TC8 were purposefully designed and synthesized.The molecular geometry can be adjusted by the steric hindrance of lateral substituents.According to the DFT calculations,from TTC6 to TT-C8T and TT-TC8,planarity of the molecular backbone is gradually improved,accompanying with the enhancing of intramolecular charge transfer effect.As for TT-TC8,the two phenyl substituents are almost perpendicular to the molecular backbone,which endues the acceptor with good solubility and suppresses it to form over-aggregation.Multidirectional regular molecular orientation and closer molecular stacking are formed in TT-TC8 film.As a result,TT-TC8 based devices afford the highest PCE of 13.13%,which is much higher than that of TTC6 (4.41%) and TT-C8T (10.42%) and among the highest PCE values based on NFREAs.  相似文献   
4.
Photoelectrochemical(PEC)technique represents a promising approach to chemical transformation by harvesting sustainable solar energy.Despite the wide applications of PEC systems such as environmental remediation and solar energy conversion,the reported PEC reactions are dominated by the radical-based processes that are initiated by the single electron transfer between photo-induced carriers and adsorbed species on photoelectrode surface[1,2].For instance,hydroxyl radicals are often involved in the PEC oxidation reactions.As well known,it is a grand challenge to control the formation and evolution rates of radicals,which inevitably leads to the unsatisfactory product selectivity of PEC reactions.Naturally,such a circumstance brings about a question to the research community whether a different mechanism can be established to sustain efficient and selective oxygenation.Recently,based on their previous findings on PEC water oxidation[3,4],Zhao and coworkers[5]reported that many substrates can be oxidized in an oxygen atom transfer(OAT)pathway,a non-radical two electron process,to oxygenated products byα-Fe2O3 photoanodes.  相似文献   
5.
3,4-Difluorobenzyl(1-ethyl-5-(4-((4-hydroxypiperidin-1-yl)-methyl)thiazol-2-yl)-1H-indol-3-yl)carbamate (NAI59), a small molecule with outstanding therapeutic effectiveness to anti-pulmonary fibrosis, was developed as an autotaxin inhibitor candidate compound. To evaluate the pharmacokinetics and plasma protein binding of NAI59, a UPLC–MS/MS method was developed to quantify NAI59 in plasma and phosphate-buffered saline. The calibration curve linearity ranged from 9.95 to 1990.00 ng/mL in plasma. The accuracy was −6.8 to 5.9%, and the intra- and inter-day precision was within 15%. The matrix effect and recovery, as well as dilution integrity, were within the criteria. The chromatographic and mass spectrometric conditions were also feasible to determine phosphate-buffered saline samples, and it has been proved that this method exhibits good precision and accuracy in the range of 9.95–497.50 ng/mL in phosphate-buffered saline. This study is the first to determine the pharmacokinetics, absolute bioavailability, and plasma protein binding of NAI59 in rats using this established method. Therefore, the pharmacokinetic profiles of NAI59 showed a dose-dependent relationship after oral administration, and the absolute bioavailability in rats was 6.3%. In addition, the results of protein binding showed that the combining capacity of NAI59 with plasma protein attained 90% and increased with the increase in drug concentration.  相似文献   
6.
7.
Luo  Hao  Chen  Long 《Mathematical Programming》2022,195(1-2):735-781
Mathematical Programming - Convergence analysis of accelerated first-order methods for convex optimization problems are developed from the point of view of ordinary differential equation solvers. A...  相似文献   
8.
Incorporating nanoscale Si into a carbon matrix with high dispersity is desirable for the preparation of lithium-ion batteries (LIBs) but remains challenging. A space-confined catalytic strategy is proposed for direct superassembly of Si nanodots within a carbon (Si NDs⊂C) framework by copyrolysis of triphenyltin hydride (TPT) and diphenylsilane (DPS), where Sn atomic clusters created from TPT pyrolysis serve as the catalyst for DPS pyrolysis and Si catalytic growth. The use of Sn atomic cluster catalysts alters the reaction pathway to avoid SiC generation and enable formation of Si NDs with reduced dimensions. A typical Si NDs⊂C framework demonstrates a remarkable comprehensive performance comparable to other Si-based high-performance half LIBs, and higher energy densities compared to commercial full LIBs, as a consequence of the high dispersity of Si NDs with low lithiation stress. Supported by mechanic simulations, this study paves the way for construction of Si/C composites suitable for applications in future energy technologies.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号