首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
  国内免费   2篇
化学   29篇
力学   5篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2014年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1992年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
1.
Biosorption of 241Am by a fungus A. niger, including the spore and hyphae, was investigated. The preliminary results showed that the adsorption of 241Am by the microorganism was efficient. More than 96% of the total 241Am could be removed from 241Am solutions of 5.6-111 MBq/l (C o) by spore and hyphaeof A. niger, with adsorbed 241Am metal (Q) of 7.2-142.4 MBq/g biomass, and 5.2-106.5 MBq/g, respectively. The biosorption equilibrium was achieved within 1 hour and the optimum pH range was pH 1-3. No obvious effects on 241Am adsorption by the fungus were observed at 10-45 °C, or in solutions containing Au3+ or Ag+, even 2000 times above the 241Am concentration. The 241Am biosorption by the fungus obeys the Freundlich adsorption equation. There was no significant difference between the adsorption behavior of A. nigerspore and hyphae. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
2.
The biosorption of radionuclide 241Am from solution by Saccharomyces cerevisiae (S. cerevisiae), and the effects of experimental conditions on the adsorption were investigated. The preliminary results showed thatS. cerevisiae is a very efficient biosorbent. An average of more than 99% of the total 241Am could be removed by S. cerevisiae of 2.1 g/l (dry weight) from 241Am solutions of 17.54–4386.0 mg/l (2.22 MBq/l–555 MBq/l) with adsorption capacities of 7.45–1880.0 mg/g biomass (dry weight) (0.94 MBq/g–237.9 MBq/g). The adsorption equilibrium was achieved within 1 hour and the optimum pH ranged 1–3. No significant differences on 241Am adsorption were observed at 10–45 °C, or in solutions containing Au3+ or Ag+, even 2000 times above 241Am concentration. The relationship between concentrations and adsorption capacities of 241Am indicated the biosorption process should be described by the Freundlich adsorption isotherm.  相似文献   
3.
The asymmetric total synthesis of (+)-xestoquinone and (+)-adociaquinones A and B was achieved in 6–7 steps using an easily accessible meso-cyclohexadienone derivative. The [6,6]-bicyclic decalin B–C ring and the all-carbon quaternary stereocenter at C-6 were prepared via a desymmetric intramolecular Michael reaction with up to 97% ee. The naphthalene diol D–E ring was constructed through a sequence of Ti(Oi-Pr)4-promoted photoenolization/Diels–Alder, dehydration, and aromatization reactions. This asymmetric strategy provides a scalable route to prepare target molecules and their derivatives for further biological studies.

The asymmetric total synthesis of (+)-xestoquinone and (+)-adociaquinones A and B was achieved in 6–7 steps using an easily accessible meso-cyclohexadienone derivative.

Various halenaquinone-type natural products with promising biological activity have been isolated from marine sponges of the genus Xestospongia1 from the Pacific Ocean. (+)-Halenaquinone (1),2,3 (+)-xestoquinone (2), and (+)-adociaquinones A (3) and B (4)4,5 bearing a naphtha[1,8-bc]furan core (Fig. 1) are the most typical representatives of this family. Naturally occurring (−)-xestosaprol N (5) and O (6)6,7 have the same structure as 3 and 4 except for a furan ring, while a naphtha[1,8-bc]furan core can also be found in fungus-isolated furanosteroids (−)-viridin (7) and (+)-nodulisporiviridin E (8)8,9 (Fig. 1). Halenaquinone (1) was first isolated from the tropical marine sponge Xestospongia exigua2 and it shows antibiotic activity against Staphylococcus aureus and Bacillus subtilis. Xestoquinone (2) and adociaquinones A (3) and B (4) were firstly isolated, respectively, from the Okinawan marine sponge Xestospongia sp.4a and the Truk Lagoon sponge Adocia sp.,4b and they show cardiotonic,4a,c cytotoxic,4b,i antifungal,4i antimalarial,4j and antitumor4l activities. These compounds inhibit the activity of pp60v-src protein tyrosine kinase,4d topoisomerases I4e and II,4f myosin Ca2+ ATPase,4c,g and phosphatases Cdc25B, MKP-1, and MKP-3.4h,kOpen in a separate windowFig. 1Structure of halenaquinone-type natural products and viridin-type furanosteroids.Owing to their diverse bioactivities, the synthesis of this family of natural compounds has been extensively studied, with published pathways making use of Diels–Alder,3a,d,e,5ac,e,g furan ring transfer,5b Heck,3b,c,5f,7,9b,d palladium-catalyzed polyene cyclization,5d Pd-catalyzed oxidative cyclization,3f and hydrogen atom transfer (HAT) radical cyclization9c reactions. In this study, we report the asymmetric total synthesis of (+)-xestoquinone (2), (−)-xestoquinone (2′), and (+)-adociaquinones A (3) and B (4) (Fig. 1).The construction of the fused tetracyclic B–C–D–E skeleton and the all carbon quaternary stereocenter at C-6 is a major challenge towards the total synthesis of xestoquinone (2) and adociaquinones A (3) and B (4). Based on our retrosynthetic analysis (Scheme 1), the all-carbon quaternary carbon center at C-6 of cis-decalin 12 could first be prepared stereoselectively from the achiral aldehyde 13via an organocatalytic desymmetric intramolecular Michael reaction.10,11 The tetracyclic framework 10 could then be formed via a Ti(Oi-Pr)4-promoted photoenolization/Diels–Alder (PEDA) reaction12–16 of 11 and enone 12. Acid-mediated cyclization of 10 followed by oxidation state adjustment could be subsequently applied to form the furan ring A of xestoquinone (2). Finally, based on the biosynthetic pathway of (+)-xestoquinone (2)4b,5c and our previous studies,7 the heterocyclic ring F of adociaquinones A (3) and B (4) could be prepared from 2via a late-stage cyclization with hypotaurine (9).Open in a separate windowScheme 1Retrosynthetic analysis of (+)-xestoquinone and (+)-adociaquinones A and B.The catalytic enantioselective desymmetrization of meso compounds has been used as a powerful strategy to generate enantioenriched molecules bearing all-carbon quaternary stereocenters.10,11 For instance, two types of asymmetric intramolecular Michael reactions were developed using a cysteine-derived chiral amine as an organocatalyst by Hayashi and co-workers,11a,b while a desymmetrizing secondary amine-catalyzed asymmetric intramolecular Michael addition was later reported by Gaunt and co-workers to produce enantioenriched decalin structures.11c Prompted by these pioneering studies and following the suggested retrosynthetic pathway (Scheme 1), we first screened conditions for organocatalytic desymmetric intramolecular Michael addition of meso-cyclohexadienone 13 (Table 1) in order to form the desired quaternary stereocenter at C-6. Compound 13 was easily prepared on a gram scale via a four-step process (see details in the ESI).Attempts of organocatalytic desymmetric intramolecular Michael additiona
EntryCat. (equiv.)Additive (equiv.)SolventTimeYield/d.r. at C2be.e.c
1(R)-cat.I (0.5)Toluene10.0 h52%/10.3 : 1 14a: 96%; 14b: 75%
2(R)-cat.I (1.0)Toluene4.0 h60%/10.0 : 1 14a: 93%; 14b: 75%
3(R)-cat.I (1.0)MeOH4.0 h47%/5.5 : 1 14a: 86%; 14b: −3%
4(R)-cat.I (1.0)DCM10.0 h28%/24.0 : 1 14a: 91%; 14b: 7%
5(R)-cat.I (1.0)Et2O10.0 h22%/22.0 : 1 14a: 91%; 14b: 65%
6(R)-cat.I (1.0)MeCN10.0 h12%/2.6 : 1 14a: 90%; 14b: 62%
7(R)-cat.I (1.0)Toluene/MeOH (2 : 1)4.0 h47%/10.0 : 1 14a: 87%; 14b: −38%
8d(R)-cat.I (1.0)AcOH (5.0)Toluene4.0 h60%e/2.1 : 1 14a: 96%; 14b: 95%
9d(R)-cat.I (0.5)AcOH (2.0)Toluene6.0 h75%e/4.0 : 1 14a: 97%; 14b: 91%
10d(R)-cat.I (0.5)AcOH (0.2)Toluene6.0 h73%e/4.3 : 1 14a: 96%; 14b: 92%
11f(R)-cat.I (0.5)AcOH (0.2)Toluene6.0 h75%e/8.0 : 1g 14a: 95%; 14b: 93%
12h(R)-cat.I (0.2)AcOH (0.2)Toluene9.0 h80%i/6.0 : 1j 14a: 97%; 14b: 91%
Open in a separate windowaAll reactions were performed using 13 (5.8 mg, 0.03 mmol, 1.0 equiv., and 0.1 M) and a catalyst at room temperature in analytical-grade solvents, unless otherwise noted.bThe yields and diastereoisomeric ratios (d.r.) were determined from the crude 1H NMR spectrum of 14 using CH2Br2 as an internal standard, unless otherwise noted.cThe enantiomeric excess (e.e.) values were determined by chiral high-performance liquid chromatography (Chiralpak IG-H).dCompound 13: 9.6 mg, 0.05 mmol, and 0.1 M.eIsolated combined yield of 14a + 14b.fCompound 13: 192 mg, 1.0 mmol, and 0.1 M.gThe d.r. values decreased to 1 : 1 after purification by silica gel column chromatography.hCompound 13: 1.31 g, 6.82 mmol, and 0.1 M.iIsolated combined yield of 12a + 12b.jThe d.r. values were determined from the crude 1H NMR spectrum of 12 obtained from the one-pot process.We initially investigated the desymmetric intramolecular Michael addition of 13 using (S)-Hayashi–Jørgensen catalysts,17 and found that the absolute configuration of the obtained cis-decalin was opposite to the required stereochemistry of the natural products (see Table S1 in the ESI). In order to achieve the desired absolute configuration of the angular methyl group at C-6, (R)-cat.I was used for further screening. In the presence of this catalyst, the intramolecular Michael addition afforded 14a (96% e.e.) and 14b (75% e.e.) in a ratio of 10.3 : 1 and 52% combined yield (entry 1, Table 1). We assumed that the enantioselectivity of the reaction was controlled by the more sterically hindered aromatic group of (R)-cat.I, which protected the upper enamine face and allowed an endo-like attack by the si-face of cyclohexadienone, as shown in the transition state TS-A (Table 1). In order to increase the yield of this reaction and improve the enantioselectivity of 14b, we further screened solvents and additives. Increasing the catalyst loading from 0.5 to 1.0 equivalents and screening various reaction solvents did not improve the enantiomeric excess of 14b (entries 2–7, Table 1). Therefore, based on previous studies,11d,e we added 5.0 equivalents of acetic acid (AcOH) to a solution of compound 13 and (R)-cat.I in toluene, which improved the enantiomeric excess of 14b to 95% with a 60% combined yield (entry 8, Table 1). And, the stability of (R)-cat.I has also been verified in the presence of AcOH (see Table S2 in the ESI). Further adjustment of the (R)-cat.I and AcOH amount and ratio (entries 9–12, Table 1) indicated that 0.2 equivalents each of (R)-cat.I and AcOH were the best conditions to achieve high enantioselectivity for both 14a and 14b, and it also increased the reaction yield (entry 12, Table 1). The enantioselectivity was not affected when the optimized reaction was performed on a gram scale: 14a (97% e.e.) and 14b (91% e.e.) were obtained in 80% isolated yield (entry 12, Table 1). We also found that the gram-scale experiments needed a longer reaction time which led a slight decrease of the diastereoselectivity. The purification of the cyclized products by silica gel flash column chromatography indicated that the major product 14a was epimerized and slowly converted to the minor product 14b (entry 11, Table 1). Both 14a and 14b are useful in the syntheses because the stereogenic center at C-2 will be converted to sp2 hybridized carbon in the following transformations. Therefore, the aldehyde group of analogues 14a and 14b was directly protected with 1,3-propanediol to give the respective enones 12a and 12b for use in the subsequent PEDA reaction.Afterward, we selected the major cyclized cis-decalins 12a and 12a′ (obtained by using (S)-cat.I in desymmetric intramolecular Michael addition, see Table S1 in the ESI) as the dienophiles to prepare the tetracyclic naphthalene framework 10 through a sequence of Ti(Oi-Pr)4-promoted PEDA, dehydration, and aromatization reactions (Scheme 2). When using 3,6-dimethoxy-2-methylbenzaldehyde (11) as the precursor of diene, no reaction occurred between 12a/12a′ and 11 under UV irradiation at 366 nm in the absence of Ti(Oi-Pr)4 (Scheme 2A). In contrast, the 1,2-dihydronaphthalene compounds 16a and 16a′ were successfully synthesized when 3.0 equivalents of Ti(Oi-Pr)4 were used. Based on our previous studies,13a,e the desired hydroanthracenol 15a was probably generated through the chelated intermediate TS-B and the cycloaddition occurred through an endo direction (Scheme 2B).18 The newly formed β-hydroxyl ketone groups in 15a and 15a′ could then be dehydrated with excess Ti(Oi-Pr)4 to form enones 16a and 16a′. These results confirmed the pivotal role of Ti(Oi-Pr)4 in this PEDA reaction: it stabilized the photoenolized hydroxy-o-quinodimethanes and controlled the diastereoselectivity of the reaction.Open in a separate windowScheme 2PEDA reaction of 11 and enone 12.Subsequent aromatization of compounds 16a and 16a′ with 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) at 80 °C afforded compounds 10a and 10a′ bearing a fused tetracyclic B–C–D–E skeleton. The stereochemistry and absolute configuration of 10a were confirmed by X-ray diffraction analysis of single crystals (Scheme 3). The synthesis of (+)-xestoquinone (2) and (+)-adociaquinones A (3) and B (4) was completed by forming the furan A ring. Compound 10 was oxidized using bubbling oxygen gas in the presence of t-BuOK to give the unstable diosphenol 17a, which was used without purification in the next step. The subsequent acid-promoted deprotection of the acetal group led to the formation of an aldehyde group, which reacted in situ with enol to furnish the pentacyclic compound 18 bearing the furan A ring. The stereochemistry and absolute configuration of 18 were confirmed by X-ray diffraction analysis of single crystals (Scheme 3). Further oxidation of 18 with ceric ammonium nitrate afforded (+)-xestoquinone (2) in 82% yield. Following the same reaction process, (−)-xestoquinone (2′) was also synthesized from 10a′ in order to determine in the future whether xestoquinone enantiomers differ in biological activity. Further heating of a solution of (+)-xestoquinone (2) with hypotaurine (9) at 50 °C afforded a mixture of (+)-adociaquinones A (3) (21% yield) and B (4) (63% yield). We also tried to optimize the selectivity of this condensation by tuning the reaction temperature and pH of reaction mixtures (see Table S3 in the ESI). The 1H and 13C NMR spectra, high-resolution mass spectrum, and optical rotation of synthetic (+)-xestoquinone (2), (+)-adociaquinones A (3) and B (4) were consistent with those data reported by Nakamura,4a,g Laurent,4j Schmitz,4b Harada5a,c and Keay.5dOpen in a separate windowScheme 3Total synthesis of (+)-xestoquinone and (+)-adociaquinones A and B.  相似文献   
4.
5.
Zeng J  Wang W  Deng P  Feng W  Zhou J  Yang Y  Yuan L  Yamato K  Gong B 《Organic letters》2011,13(15):3798-3801
Hydrogen-bonded zippers bearing terminal alkene groups were treated with Grubbs' catalyst, leading to covalently cross-linked zippers without violating H-bonding sequence specificity. The yield of a cross-linked zipper depended on the stability of its H-bonded precursor, with a weakly associating pair giving reasonable yields only at high concentrations while strongly associating pairs showed nearly quantitative yields. The integration of thermodynamic (H-bonding) and kinetic (irreversible C═C bond formation) processes suggests the possibility of developing many different covalent association units for constructing molecular structures based on a self-assembling way.  相似文献   
6.
7.
谢全敏  夏元友  程康 《力学学报》2001,9(3):308-311
基于时序ARMA模型, 分析了岩体变形监测数据的动态建模及其预测的基本方法, 并用ARMA模型对板岩山危岩体监测数据进行建模及预测, 取得了较好的效果。  相似文献   
8.
Biosorption of 241Am by immobilized Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
More than half of the world's annual production of radionuclides is used for medical purposes such as diagnostic imaging of diseases and patient therapy. Using aqueous homogeneous solution reactor technology, production quantities of medical radioisotopes 99Mo and89Sr, can be extracted from one reactor cycle. 99Mo may be produced directly from UO2SO4 uranyl sulfate in an aqueous homogeneous solution nuclear reactor in a manner that produces high purity radionuclides, making efficient use of the reactor's uranium fuel solution. The process is relatively simple, economical, and waste free, eliminating uranium targets. The short-lived radioisotope 99mTc is eluted from 99Mo for diagnostic imaging. Radioisotope 89Sr infusion is a therapeutic modality that reduces reliance on narcotic analgesia through palliation of metastatic bone pain caused by metastases of the cancer to the bone. Painful disseminated osseous metastases are common with carcinomas of the lung, prostate, and breast. Synergistic interleaving of two manufacturing processes, one producing 99Mo and another producing 89Sr in the same production cycle of an aqueous homogeneous solution reactor makes full and efficient use of the time for both the neutron irradiation stage and the extraction stage of each radionuclide. Interleaving the capture of 89Sr radioisotope with production processing of 99Mo radioisotope is achieved, since the extraction and subsequent elimination of radionuclide impurities occurs during separate parts of the reactor cycle. The process applies to either HEU or LEU nuclear fuels in an aqueous homogeneous solution reactor.  相似文献   
9.
Summary Insulin receptors are overexpressed on a number of human tumors, leading to significant affinity of insulin to these tumors. It is appealing to receptor-targeted radiotherapy for malignant tumors if insulin is labeled with suitable radionuclide. In this paper, N-succinimidyl 5-(tributylstannyl)-3-pyridinecarboxylate (SPC), a potential bi-functional linker for radioiodination of proteins or peptides, was synthesizedby using 5-bromonicotinic acid as the starting material. Then, with this bi-functional linker, insulin was conjugated with 131I, and the tissue distribution of the labeled insulin (131I-SIPC-insulin) in normal mice was investigated. The results showed that insulin </span> could be conjugated with131I using SPC as the linker </span> in a labeling yield of40-58%, and with radiochemical purity of more than 98% after purification bySephadex?G-10. Even kept at room temperature for 72 hours, the radiochemical purity of 131I-SIPC-insulin was still more than 97%, implying that the conjugated insulin was constantly stable in vitro.Meanwhile, in order to evaluate the in vivo stability of the conjugated compounds, insulin was also labeled with 131I by a direct method using chloramine-T (Ch-T) as the electrophilic agents.Biodistribution of131I-SIPC-insulinin micesuggested that 131I could clear rapidly from the blood,mainly excreted by kidney. However, 131I uptake of mice with131I-SIPC-insulin in some key organs, especially in thyroid and stomach, were much less (150 or 30 times) than that with the direct labeled insulin (131I-insulin). Additionally, it was noted that 131I-SIPC-insulin hasmuch betterinvivo stability than131I-insulin.</p> </p>  相似文献   
10.
An antigastric cancer monoclonal antibody, 3H11 and its Fab fragment, were labeled with #-emitter 211At using p-[211At] astatobenzoic acid (PAtBA) intermediate. The astatinated antibodies had conspicuous cytotoxic effect on human gastric cancer cell M85 in vitro. Tissue distribution of the astatinated antibodies were investigated in nude mice with subcutaneous tumor xenografts by i.v. injection. The astatinated Fab fragment was better suitable for 7.2-hour half life of 211At, since its tumor uptake remained higher (9.48–8.42 I.D%/g) than the astatinated intact antibody (~4.0 I.D%/g) from 3 to 14-hour post injection. However, the undesired high 211At uptake of the astatinated antibodies in some normal tissues, such as stomach, kidney and lung, suggested that the 211At labeled antibodies should be further explored.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号