首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
化学   10篇
力学   4篇
数学   1篇
物理学   11篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2012年   3篇
  2011年   3篇
  2009年   4篇
  2008年   4篇
  2005年   1篇
  2002年   1篇
  1999年   1篇
  1993年   1篇
  1992年   1篇
  1983年   1篇
  1979年   1篇
  1942年   2篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
2.
The three most abundant nonhistone polypeptides (molecular weights 75,000, 71,000 and 61,000) of the avian erythrocyte nucleus have previously been isolated in the nuclear envelope fraction. They have been separated by sodium dodecylsulfate-polyacrylamide gel electrophoresis and peptide-mapped after limited enzymatic digestion. Three enzymes -- chymotrypsin, papain and Staphylococcus aureus protease -- were used. Results obtained with each enzyme indicate strong similarities between the three nuclear envelope polypeptides. The amino acid compositions of the two most abundant polypeptides (P75 and P71) have been determined and found to be similar. Further, they readily yield large fragments upon brief alkaline hydrolysis. For both P75, and P71 the degree and the pattern of alkaline fragmentation are almost identical. A 61,000-dalton polypeptide which appears to be P61 is obtained from P75 and P71 by mild acid hydrolysis. These results establish the close chemical similarity of these predominant polypeptides in the erythrocyte nucleus and suggest that they serve related functions.  相似文献   
3.
The novel adduct 1,1,3,3-tetramethylguanidine-gallane, (Me2N)2CN(H).GaH3, has been prepared by the reaction of [(Me2N)2CNH2]+Cl- with LiGaH4 in Et2O solution. Its spectroscopic properties indicate a monomeric species with an unusually strong coordinate link between the imido function and GaH3, an inference confirmed by the crystal structure at 150 K which also reveals significant secondary interactions through non-classical N-H...H-Ga bridges. Despite the intrinsic strength of the Ga-N bond, however, vaporisation at ca. 310 K occurs with partial dissociation, and decomposition via more than one pathway proceeds at temperatures >330-350 K to give a variety of products, including the free base, Me2NH, H2, and a novel gallium-nitrogen compound composed of a Ga4N4 cubane-like core bridged on three edges by -N{C(NMe2)2}GaH2- units.  相似文献   
4.
5.
6.
7.
We present the results of experimental studies of specific features in the behavior of small-scale artificial field-aligned irregularities (AFAIs) and the DM component in the spectra of stimulated electromagnetic emission (SEE). Analysis of experimental data shows that AFAIs in the polar ionosphere are generated under different background geophysical conditions (season, local time, the presence of sporadic layers in the E region, etc.). It is shown that AFAIs can be excited not only in the F region, but also in “thick” sporadic E s layers of the polar ionosphere. The AFAIs were observed in some cycles of heating when the HF heater frequency exceeded the critical frequency by 0.3–0.5 MHz. Propagation paths of diagnostic HF radio waves scattered by AFAIs were modelled for geophysical conditions prevailing during the SPEAR heating experiments. Two components, namely, a narrow-banded one with a Doppler-spectrum width of up to 2 Hz and a broadband one observed in a band of up to 20 Hz, were found in the sporadic E s layer during the AFAI excitation. Analysis of the SEE spectra shows that the behavior of the DM component in time is irregular, which is possibly due to strong variations in the critical frequency of the F 2 layer from 3.5 to 4.6 MHz. An interesting feature observed in the SPEAR heating experiments is that the generation of the DM component was similar to the excitation of AFAIs when the heater frequency was up to 0.5 MHz higher than the critical frequency. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 51, No. 11, pp. 939–950, November 2008.  相似文献   
8.
We present the first results of observations of the stimulated electromagnetic emission (SEE) in the ionosphere modified by the Space Plasma Exploration by Active Radar (SPEAR) heating facility. Observation of the SEE is the key method of ground-based diagnostics of the ionospheric plasma disturbances due to high-power HF radiation. The presented results were obtained during the heating campaign performed at the SPEAR facility in February–March 2007. Prominent SEE special features were observed in periods in which the critical frequency of the F 2 layer was higher than the pump-wave frequency (4.45 MHz). As an example, such special features as the downshifted maximum and the broad continuum in the region of negative detunings from the pump-wave frequency are presented. Observations clearly demonstrate that the ionosphere was efficiently excited by the SPEAR heating facility despite the comparatively low pump-wave power. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 51, No. 11, pp. 951–955, November 2008.  相似文献   
9.
10.
Computer simulations based on Discrete Element Method have been performed in order to investigate the influence of interparticle interactions on the kinetics of self-assembly and the mechanical strength of nanoparticle aggregates.Three different systems have been considered.In the first system the interaction between particles has been simulated using the JKR (Johnson,Kendall and Roberts) contact theory,while in the second and third systems the interaction between particles has been simulated using van der Waals and electrostatic forces respectively.In order to compare the mechanical behaviour of the three systems,the magnitude of the maximum attractive force between particles has been kept the same in all cases.However,the relationship between force and separation distance differs from case to case and thus,the range of the interparticle force.The results clearly indicate that as the range of the interparticle force increases,the self-assembly process is faster and the work required to produce the mechanical failure of the assemblies increases by more than one order of magnitude.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号