首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   0篇
化学   17篇
力学   1篇
数学   1篇
物理学   29篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   5篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1982年   1篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
排序方式: 共有48条查询结果,搜索用时 31 毫秒
1.
2.
3.
The energy transfer reation of He(23S) + CS was studied spectroscopically in a flowing afterglow apparatus. The CS+(B2Σ+ → A 2Πi) transition is identified via three members of the Δν = 0 sequence (406–415 nm). The spin-orbit splitting of the (0, 0) band of CS+(A 2Πi) is 301 ± 5 cm?1. A weak emitting system (280–340 nm) is tentatively identified as CS+(B2Σ+→ X2Σ+).  相似文献   
4.
Yencha AJ  Lopes MC  King GC  Hochlaf M  Song Y  Ng CY 《Faraday discussions》2000,(115):355-62; discussion 407-29
The pulsed-field ionization (PFI) photoelectron (PE) spectrum of HF has been recorded at the chemical dynamics beamline of the advanced light source over the photon energy range 15.9-16.5 eV using a time-of-flight selection scheme at a resolution of 0.6 meV. Rotationally-resolved structure in the HF+(X 2 pi 3/2, 1/2, v+ = 0, 1) band systems are assigned. The spectral appearance of these systems agrees with a previous VUV laser PFI-PE study. Importantly, extensive rotationally-resolved structure between these two vibrational band systems is also observed. This is attributed to ion-pair formation via Rydberg states converging on the v+ = 1 vibrational levels of the HF+(X 2 pi 3/2, 1/2) spin-orbit states. These Rydberg states are assigned to the 1 sigma+ part of the nd-complexes (sigma, pi, and delta). Ion-pair formation is observed in this study by the detection of F- ions. Some partially rotationally-resolved structure in a previously published threshold photoelectron spectrum is similarly attributed to ion-pair formation (F- detection) through a combination of the v+ = 17 level of the (A 2 sigma+) 3s sigma Rydberg state and the (X 2 pi 3/2, 1/2, v+ = 1) 7d Rydberg states. On the basis of the present study, an accurate experimental value for the dissociation energy of the ground state of HF has been obtained, D0(HF) = 5.8650(5) eV.  相似文献   
5.
6.
7.
An electron spectrometric study has been performed on HCl using metastable helium and neon atoms as well as neon resonance photons. High resolution electron spectra were obtained with two different beam apparatuses for a mixed He(21 S, 23 S) beam, a pure He(23 S) beam, and, for the first time, state-selected pure Ne(3s 3 P 2) and pure Ne(3s 3 P 0) beams, and for NeI resonance photons. For the system He(23 S)+HCl the vibrational populationsP(υ′) of the formed HCl+ (X 2 i , υ′) and HCl+ (A 2Ω+, υ′) ions are found to differ from the Franck-Condon factors for unperturbed potentials, indicating slight bond stretching in HCl upon He(23 S) approach. For He(21 S)+HCl the vibrational peak shapes and vibrational populations are substantially different from the He(23 S) case, pointing to an additional, charge exchanged interaction (He++HCl?) in the entrance channel of the former system. For the first time, we have detected the electrons in both the He(21 S)+HCl and He(23 S)+HCl spectra associated with the major mechanism for the formation of Cl+ ions: energy transfer to repulsive HCl** Rydberg states, dissociating toH(1s) and autoionizing Cl**(1 D 2 nl) atoms. For both Ne(3 P 2)+HCl and Ne(3 P 0)+HCl, the populationsP(υ′) of both final molecular states HCl+ (X, A) agree closely with the Franck-Condon factors at the average relative collision energyē coll=55 meV and, for HCl+ (A 2Ω+), also atē coll=130 meV.  相似文献   
8.
The CN(B2Σ+ - X2Σ+) tail band emission system for μ′ = 11–20 resulting from the energy transfer reaction Ar(3P0,2) + BrCN in a flowing afterglow apparatus was measured. The vibrational and rotational distributions were determined as a function of argon pressure. Numerous perturbed rotational lines were observed; analysis of the dependences of these lines on argon pressure, with the aid of experimental information already published, led to the following assignments as to the origins of the perturbations: For μ′ = 11, N′ = 20 and μ′ = 13, N′ = 9, the perturbing state is a 4Σ+; for μ′ = 12, N′ = 10 and 14, μ′ = 14, N′ = 7 and 10, and μ′ = 17, N′ ≈ 17–19 the perturbing state is A 2Πi. The perturbed rotational line, μ′ = 11, N′ = 20, is found to be the primary source of intensity in the μ′ =11 vibrational band, but in all other cases the perturbed rotational lines do not significantly aid in the populating of the vibrational state. The anomalously high vibrational populations found in the tail band emission system (μ′ = 12, 14, 17 and 18), as well as the significantly high rotational excitations observed in the μ′ = 12–20 vibrational bands, apparently arise directly from the reaction intermediate.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号