首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  国内免费   1篇
化学   10篇
力学   1篇
数学   2篇
物理学   5篇
  2020年   1篇
  2016年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2005年   3篇
  1999年   1篇
  1997年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
Summary LaNiSn and NdNiSn compounds and their deuterides have been studied by variable temperature 119Sn M?ssbauer spectroscopy. The hyperfine parameters obtained experimentally are in good agreement with those derived from first principle calculations. The enlargement of quadrupole splitting observed for LaNiSn after deuteration confirms the lower symmetry of electron density around tin atoms indicated by the calculation of partial Sn-p density of states (DOS). Magnetic ordering is observed at low temperature in deuterided NdNiSn.  相似文献   
2.
A new intermetallic deuteride Ce2Ni7D4.7 with an anomalous volume expansion has been studied. Its structure was solved on the basis of in situ neutron diffraction data. Expansion proceeds along the c-axis and within the CeNi2 slabs only. All D atoms are located inside these slabs and on the border between CeNi2 and CeNi5. Ordering of D atoms in the bulk of CeNi2 is accompanied by substantial deformation of these slabs thus lowering the hexagonal symmetry to orthorhombic [space group Pmcn (No. 62); a=4.9251(3) Å, b=8.4933(4) Å, c=29.773(1) Å]. Inside the CeNi2 layer the hydrogen sublattice is completely ordered; all D-D distances exceed 2.0 Å. Local coordination of Ni by D inside the CeNi2 blocks is of “open”, saddle-like type. Hydrogen ordering is mainly determined by Ce-H and H-H interactions. The pressure-composition-temperature measurements yielded the following thermodynamic parameters of the formation of the hydride: ΔH=−22.4 kJ/molH, ΔS=−59.9 J/(K molH).  相似文献   
3.
4.
Russian Journal of Physical Chemistry A - The kinetics of the hydrogenation of magnesium composites with graphene-like material (GLM) on which nickel particles are deposited (Ni/GLM) and...  相似文献   
5.
We study a class of stationary transport equation with nonlocal low-order tems We obtain the existence and uniqueness of a solution in sobolev spaces  相似文献   
6.
7.
The present work is focused on studies of the influence of magnesium on the hydrogenation behaviour of the (La,Mg)2Ni7 alloys. Substitution of La in La2Ni7 by Mg to form La1.5Mg0.5Ni7 preserves the initial Ce2Ni7 type of the hexagonal P63/mmc structure and leads to contraction of the unit cell. The system La1.5Mg0.5Ni7-H2 (D2) was studied using in situ synchrotron X-ray and neutron powder diffraction in H2/D2 gas and pressure-composition-temperature measurements. La replacement by Mg was found to proceed in an ordered way, only within the Laves-type parts of the hybrid crystal structure, yielding formation of LaMgNi4 slabs with statistic and equal occupation of one site by La and Mg atoms. Mg alters structural features of the hydrogenation process. Instead of a strong unilateral anisotropic expansion which takes place on hydrogenation of La2Ni7, the unit cell of La1.5Mg0.5Ni7D9.1 is formed by nearly equal hydrogen-induced expansions proceeding in the basal plane (Δa/a=7.37%) and along [001] (Δc/c=9.67%). In contrast with La2Ni7D6.5 where only LaNi2 layers absorb hydrogen atoms, in La1.5Mg0.5Ni7D9.1 both LaNi5 and LaMgNi4 layers become occupied. Nine types of sites were found to be filled by D in total, including tetrahedral (La,Mg)2Ni2, (La,Mg)Ni3, Ni4, tetragonal pyramidal La2Ni3 and trigonal bipyramidal (La,Mg)3Ni2 interstices. The hydrogen sublattice around the La/Mg site shows formation of two co-ordination spheres of D atoms: an octahedron MgD6 and a 16-vertex polyhedron LaD16 around La. The interatomic distances are in the following ranges: La-D (2.28-2.71), Mg-D (2.02-2.08), Ni-D (1.48-1.86 Å). All D-D distances exceed 1.9 Å. Thermodynamic PCT studies yielded the following values for the ΔH and ΔS of hydrogenation/decomposition; ΔHH=−15.7±0.9 kJ (molH)−1 and ΔSH=−46.0±3.7 J (K molH)−1 for H2 absorption, and ΔHH=16.8±0.4 kJ (molH)−1 and ΔSH=48.1±1.5 J (K molH)−1 for H2 desorption.  相似文献   
8.
Aluminum trihydride (alane) is one of the most promising among the prospective solid hydrogen-storage materials, with a high gravimetric and volumetric density of hydrogen. In the present work, the alane, crystallizing in the gamma-AlH3 polymorphic modification, was synthesized and then structurally characterized by means of synchrotron X-ray powder diffraction. This study revealed that gamma-AlH3 crystallizes with an orthorhombic unit cell (space group Pnnm, a = 5.3806(1) A, b = 7.3555(2) A, c = 5.77509(5) A). The crystal structure of gamma-AlH3 contains two types of AlH6 octahedra as the building blocks. The Al-H bond distances in the structure vary in the range of 1.66-1.79 A. A prominent feature of the crystal structure is the formation of the bifurcated double-bridge bonds, Al-2H-Al, in addition to the normal bridge bonds, Al-H-Al. This former feature has not been previously reported for Al-containing hydrides so far. The geometry of the double-bridge bond shows formation of short Al-Al (2.606 A) and Al-H (1.68-1.70 A) bonds compared to the Al-Al distances in Al metal (2.86 A) and Al-H distances for Al atoms involved in the formation of normal bridge bonds (1.769-1.784 A). The crystal structure of gamma-AlH3 contains large cavities between the AlH6 octahedra. As a consequence, the density is 11% less than for alpha-AlH3.  相似文献   
9.
非线性涡黏性系数模型和代数应力模型联系了线性涡黏性系数湍流模型和完整的微分 雷诺应力模型.随着它们受到日益关注,其形式也越来越多样化.本篇综述的目的是对这些模 型加以总结并比较它们之间的共同点及不同之处,指出它们与完整微分雷诺应力模型之间的 关系,以及相对于线性涡黏性系数模型而言它们在预报流场上所具有的优势.  相似文献   
10.
Reversible hydrogen storage capacity of the La(3-x)Mg(x)Ni(9) alloys, charged by gaseous hydrogen or by electrochemical methods, reaches its maximum at composition La(2)MgNi(9). As (La,Mg)Ni(3-3.5) alloys are the materials used in advanced metal hydride electrodes in Ni-MH batteries, this raises interest in the study of the structure-properties interrelation in the system La(2)MgNi(9)-H(2) (D(2)). In the present work, this system has been investigated by use of in situ synchrotron X-ray and neutron powder diffraction in H(2)/D(2) gas and by performing pressure-composition-temperature measurements. The saturated La(2)MgNi(9)D(13.1) hydride forms via an isotropic expansion and crystallizes with a trigonal unit cell (space group R3m (No.166); a = 5.4151(1) ?; c = 26.584(2) ?; V = 675.10(6) ?(3)). The studied hybrid structure is composed of a stacking of two layers resembling existing intermetallic compounds LaNi(5) (CaCu(5) type) and LaMgNi(4) (Laves type). These are occupied by D to form LaNi(5)D(5.2) and LaMgNi(4)D(7.9). The LaNi(5)D(5.2) slab has a typical structure observed for all reported LaNi(5)-containing hybrid structures of the AB(5) + Laves phase types. However, the Laves type slab LaMgNi(4)D(7.9) is different from the characterized individual LaMgNi(4)D(4.85) hydride. This results from the filling of a greater variety of interstitial sites in the La(2)MgNi(9)D(13)/LaMgNi(4)D(7.9), including MgNi(2), Ni(4), (La/Mg)(2)Ni(2), and (La/Mg)Ni(3), in contrast with individual LaMgNi(4)D(4.85) where only La(2)MgNi(2) and Ni(4) interstitials are occupied. Despite a random distribution of La and Mg in the structure, a local hydrogen ordering takes place with H atoms favoring occupation of two Mg-surrounded sites, triangles MgNi(2) and tetrahedra LaMgNi(2). A directional bonding between Ni, Mg, and hydrogen is observed and is manifested by a formation of the NiH(4) tetrahedra and MgH(6) octahedra, which are connected to each other by sharing H vertexes to form a spatial framework.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号