首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   7篇
  国内免费   14篇
化学   79篇
晶体学   3篇
力学   7篇
数学   4篇
物理学   29篇
  2023年   2篇
  2022年   4篇
  2021年   11篇
  2020年   5篇
  2019年   12篇
  2018年   6篇
  2017年   5篇
  2015年   5篇
  2014年   8篇
  2013年   15篇
  2012年   8篇
  2011年   16篇
  2010年   7篇
  2009年   2篇
  2008年   4篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
排序方式: 共有122条查询结果,搜索用时 78 毫秒
1.
2.
Porous polylactide (PLA) microspheres were fabricated by an emulsion‐solvent evaporation method based on solution induced phase separation. Scanning electron microscopy (SEM) observations confirmed the porous structure of the microspheres with good connectivity. The pore size was in the range of decade micrometers. Besides large cavities as similarly existed on non‐porous microspheres, small pores were found on surfaces of the porous microspheres. The apparent density of the porous microspheres was much smaller than that of non‐porous microspheres. Fabrication conditions such as stirring rate, good solvent/non‐solvent ratio, PLA concentration and dispersant (polyvinyl alcohol, PVA) concentration had an important influence on both the particle size and size distribution and the pore size within the microspheres. A larger pore size was achieved at a slower stirring rate, lower good solvent/non‐solvent ratio or lower PLA concentration due to longer coalescence time. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
3.
4.
5.
6.
A novel fluorescent nanoprobe for glutathione S‐transferase (GST) has been developed by incorporating 3,4‐dinitrobenzamide (a specific substrate of GST) onto CdTe/ZnTe quantum dots. The probe itself displays a low background signal due to the strong quenching effect of the electron‐withdrawing unit of 3,4‐dinitrobenzamide on the quantum dots. However, GST can efficiently catalyze the nucleophilic substitution of reduced glutathione on the p‐nitro group of the nanoprobe, leading to a large fluorescence enhancement. Most notably, this enhancement shows high selectivity and sensitivity towards GST instead of the other biological substances. With this nanoprobe, a simple fluorescence imaging method for intracellular GST has been established, and its applicability has been successfully demonstrated for imaging GST in different living cells, which reveals that A549 cells express GST about 3 times higher than NIH‐3T3 and Hela cells.  相似文献   
7.
Graphene-nanosheet-based highly porous magnetite nanocomposites (GN-HPMNs) have been prepared using a simple solvothermal method and used as an immobilization matrix for the fabrication of a solid-state electrochemiluminescence (ECL) sensor on paper-based chips. Highly porous Fe3O4 nanocrystal clusters were coated with acrylate and wrapped tightly on the skeleton of graphene nanosheets. The structures and sizes of the GN-HPMNs could be tuned by varying the proportions of the solvents ethylene glycol and diethylene glycol. Then, the relatively highly porous ones with an average diameter of about 65 nm were combined with Nafion to form composite films on an electrode surface for immobilization of Ru(bpy)3 2+ (bpy is 2,2′-bipyridine). Because of their porosity, negatively charged surface, and cooperative characteristics of magnetic nanomaterials and graphene, under an external magnetic field, the GN-HPMNs ensured effective immobilization, excellent electron transfer, and long-term stability of Ru(bpy)3 2+ in the composite film. The sensor developed exhibited excellent reproducibility with a relative standard deviation of 0.65 % for 30 continuous cycles. It was found to be much more favorable for detecting compounds containing tertiary amino groups and DNAs with guanine and adenine. A detection limit (signal-to-noise ratio of 3) of 5.0 nM was obtained for tripropylamine. As an application example, 0.5 nM single-nucleotide mismatch could be detected. This was the first attempt to introduce magnetic nanomaterials and an external magnetic field into paper-based chips. The sensor developed has the advantages of high sensitivity, good stability, and wide potential applicability as well as simplicity, low cost, and good disposability.
Figure
Schematic diagram of using graphene-nanosheet-based highly porous magnetite nanocomposites for fabrication of a solid-state electrochemiluminescence sensor on paper-based chips and application example of the developed sensor for single-nucleotide mismatch discrimination  相似文献   
8.
9.
利用温度梯度法,在6.5 GPa、1 300~1 350℃的高温高压极端物理条件下,通过在FeNiCo-C合成体系中添加硫脲(CH4N2S)成功合成了金刚石,所合成的晶体呈现出黄色且具有六-八面体形貌.利用扫描电镜(SEM)对所合成金刚石的表面形貌进行了表征,测试结果表明,随着合成体系中CH4N2S添加量的逐渐增加,所合成金刚石的表面变得逐渐粗糙.借助傅里叶红外(FT-IR)光谱对金刚石样品内部的氮、氢缺陷以及化学键结构进行了测试分析,结果表明,金刚石中的氢元素以-CH3,-CH2-,C-H形式存在,而其内部的氮杂质以C心、A心形式存在.此外,在3 300~3 600 cm-1观察到NH的吸收带.  相似文献   
10.
The production of functional activated carbon materials starting from cheap natural precursors using environmentally friendly processes is a highly attractive subject in material chemistry today. Recently, much attention has been focused on the use of plant biomass to produce functional carbonaceous materials, encompassing economic, environmental and social issues. Besides the classical route to produce activated carbons from fossil materials, rice husk shows clear advantages in that it can generate a variety of cheap and sustainable carbonaceous materials with attractive nanostructure and functional patterns for a wide range of applications. From a comprehensive literature review, it was found that porous carbon that derived from rice husks, in addition to having wide availability, has fast kinetics and appreciable adsorption capacities too. Porous carbon materials also play a significant role in new applications such as catalytic supports, battery electrodes, capacitors, and gas storage. In this review, an extensive list of rice husks literature has been compiled. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.  相似文献   
1 [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号