首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   4篇
力学   2篇
  2022年   1篇
  2020年   1篇
  2016年   1篇
  2010年   1篇
  2004年   1篇
  2002年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Effects of peripherally-cut twisted tape insert on heat transfer, friction loss and thermal performance factor characteristics in a round tube were investigated. Nine different peripherally-cut twisted tapes with constant twist ratio (y/W = 3.0) and different three tape depth ratios (DR = d/W = 0.11, 0.22 and 0.33), each with three different tape width ratios (WR = w/W = 0.11, 0.22 and 0.33) were tested. Besides, one typical twisted tape was also tested for comparison. The measurement of heat transfer rate was conducted under uniform heat flux condition while that of friction factor was performed under isothermal condition. Tests were performed with Reynolds number in a range from 1000 to 20,000, using water as a working fluid. The experimental results revealed that both heat transfer rate and friction factor in the tube equipped with the peripherally-cut twisted tapes were significantly higher than those in the tube fitted with the typical twisted tape and plain tube, especially in the laminar flow regime. The higher turbulence intensity of fluid in the vicinity of the tube wall generated by the peripherally-cut twisted tape compared to that induced by the typical twisted tape is referred as the main reason for achieved results. The obtained results also demonstrated that as the depth ratio increased and width ratio decreased, the heat transfer enhancement increased. Over the range investigated, the peripherally-cut twisted tape enhanced heat transfer rates in term of Nusselt numbers up to 2.6 times (turbulent regime) and 12.8 times (laminar regime) of that in the plain tube. These corresponded to the maximum performance factors of 1.29 (turbulent regime) and 4.88 (laminar regime).  相似文献   
2.
In the preparation of macroporous hydrophobic organosilicate films using methyltriethoxysilane (MTES) as precursor, the effects of surfactant addition, surfactant properties and atmospheric humidity were explored. As films dried, preferential evaporation of the ethanol resulted in an increase of the relative water content. This led to development of phase separation between the hydrophobic gel and the aqueous liquid and ultimately the formation of macropores. In the presence of surfactant, surfactant adsorption at the aqueous phase/gel interface affected the extent of phase separation therefore the resulting pores. Span 20 surfactant (HLB = 8.6) has lower compatibility with the aqueous phase than Tween 20 (HLB = 16.7) and effectively increases the hydrophobicity of the gel phase leading to the formation of larger pores. An increase in Span 20 content from 2 wt.% to 5 wt.% also increased pore size. Film porosity also increased significantly with humidity inside the coating chamber. It would appear that the increased porosity is a result of increased phase separation caused by reduced water evaporation at the higher humidity. Highly macroporous (up to 80% porosity), reproducible and uniform films were obtained by incorporating Span 20 surfactant into the coating solutions and performing dip coating at 80% relative humidity.  相似文献   
3.
Advanced technologies of electronics industries have led to environmental contamination concerns, especially waste print circuit boards containing a very high concentration of copper (II) ions, which can be discharged in wastewater containing many contaminated metals. A low pH is a necessity for treating industrial wastewater containing heavy metals to meet engineering process design. A novel polymeric bispicolamine chelating resin, Dowex-M4195, was applied as an alternative for investigating the behavior of copper (II) in acidic solution via an ion exchange method in a batch experiment system. Characterization of physical and chemical properties before and after ion exchange were also explored through BET, SEM-EDX, FTIR and XRD. Response surface methodology was also applied for optimization of copper (II) removal capacity using design of experiment for selective chelating resin at a low pH. The results indicate that H+ Dowex-M4195 chelating resin had a high-carbon content and specific surface area of >64% and 26.5060 m2/g, respectively. It was predominantly macropore porous in nature due to the N2 gas adsorption isotherm and exhibited type IV with insignificant desorption hysteresis loop of H1-type. It was spherical and cylindrical. After the ion exchange process of copper (II)-loaded H+ Dowex-M4195, the specific surface area and total pore volume decreased by about 17.82% and 5.39%, respectively, as compared to H+ Dowex-M4195. Hysteresis loop, isotherm and pore size distribution were also similar. Regarding the functional group, the surface morphology and crystalline structures of H+ Dowex-M4195 showed copper (II) compound based on the structure of chelating resin that confirmed effective ion exchange behavior. The design of optimization indicated that copper (II) removal capacity of about 31.33 mg/g was achieved, which could be obtained at 6.96 h, pH of 2 (a desirable low pH), dose of 124.13 mg and concentration of 525.15 mg/L. The study indicated that the H+ Dowex-M4195 (which is commercially available on the market) can successfully be applied as an alternative precursor through the ion exchange method for further reuse and regeneration of the copper (II) in the electronic waste industries and other wastewater applications needed to respond the policy of biocircular green economy in Thailand.  相似文献   
4.
5.
An antireflective film produced by incorporation of polyethylene glycol (PEG) in the sol is compared to one produced using an aged sol. Incorporation of organic polymer in the precursor solution is a more effective method of increasing the porosity of films and transmittance of the glass substrate. Combination of aging and PEG addition increases the potential for the creation of uniformly porous structures. Aging at high oxide concentration enhances condensation and forms large silica particles containing continuous isolated silanol sites which favor PEG adsorption via hydrogen bonding. Film morphology is affected by phase separation in both the sol and during drying of film. Coating uniformity was improved by minimising phase separation during drying. This was achieved by increasing PEG adsorption by silica sol. Using this technique, coated glass with maximum transmittance of 99.7% can be produced by a simple single step coating.  相似文献   
6.

Heat transfer enhancement and performance of compact heat exchangers have been extensively studied in the past century for the purpose of promoting energy efficiency. Microfin tubes in single/two/multiple-phase flow heat exchangers into which twisted tape swirl generators are installed can promote heat transfer with a moderate pressure loss penalty. This article reports on the enhanced heat transfer of silver–water nanofluids in a microfin tube into which loose-fit twisted tapes are installed in a counter-flow arrangement. The experiments were carried out using nanofluids with various silver concentrations (0.007–0.03 vol%), loose-fit twisted tapes with clearance ratios (c/D) of 0.0 (tight-fit), 0.05, 0.075 and 0.1, for a twist ratio, y/W, of 2.0. The results indicate that the heat transfer rate (Nu) and pressure drop (f) increase with a decrease in clearance ratio (c/D) and increase in silver (Ag) nanoparticle concentration. Additionally, the thermal performance factor tends to increase with the decrease in Reynolds numbers.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号