首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8517篇
  免费   880篇
  国内免费   801篇
化学   6973篇
晶体学   86篇
力学   249篇
综合类   41篇
数学   875篇
物理学   1974篇
  2024年   14篇
  2023年   55篇
  2022年   183篇
  2021年   210篇
  2020年   200篇
  2019年   259篇
  2018年   169篇
  2017年   180篇
  2016年   375篇
  2015年   369篇
  2014年   413篇
  2013年   614篇
  2012年   666篇
  2011年   700篇
  2010年   479篇
  2009年   501篇
  2008年   595篇
  2007年   520篇
  2006年   521篇
  2005年   472篇
  2004年   427篇
  2003年   391篇
  2002年   491篇
  2001年   348篇
  2000年   205篇
  1999年   151篇
  1998年   102篇
  1997年   81篇
  1996年   67篇
  1995年   46篇
  1994年   55篇
  1993年   54篇
  1992年   34篇
  1991年   29篇
  1990年   34篇
  1989年   21篇
  1988年   13篇
  1987年   7篇
  1986年   12篇
  1985年   20篇
  1984年   13篇
  1983年   17篇
  1982年   9篇
  1981年   13篇
  1980年   13篇
  1979年   7篇
  1978年   8篇
  1976年   8篇
  1975年   6篇
  1969年   3篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
1.
The requirement of green and sustainable materials to prepare heterogeneous catalysts has intensified for practical reasons over the past few decades. Carbohydrates are possibly the most plentiful and renewable organic materials in nature with inimitable physiochemical properties, plausible low-cost and large-scale production, and sustainability features could be exploited in the generation of nanostructured heterogeneous catalysts. This review article outlines the organic transformations catalyzed by diverse carbohydrate-based nanostructured catalysts in greener and environmentally friendly processes. Selected examples are highlighted for a variety of organic reactions exploiting the proposed catalysts’ reactivity and reusability, and interactions with the intrinsic nature of the applied carbohydrate supports; advantages and speculated challenges of the introduced catalysts are deliberated as well.  相似文献   
2.
Oral microbes have the capacity to spread throughout the gastrointestinal system and are strongly associated with multiple diseases. Given that tonsils are located between the oral cavity and the laryngopharynx at the gateway of the alimentary and respiratory tracts, tonsillar tissue may also be affected by microbiota from both the oral cavity (saliva) and the alimentary tract. Here, we analyzed the distribution and association of the microbial communities in the saliva and tonsils of Korean children subjected to tonsillectomy because of tonsil hyperplasia (n = 29). The microbiome profiles of saliva and tonsils were established via 16S rRNA gene sequencing. Based on the alpha diversity indices, the microbial communities of the two groups showed high similarities. According to Spearman’s ranking correlation analysis, the distribution of Treponema, the causative bacterium of periodontitis, in saliva and tonsils was found to have a significant positive correlation. Two representative microbes, Prevotella in saliva and Alloprevotella in tonsils, were negatively correlated, while Treponema 2 showed a strong positive correlation between saliva and tonsils. Taken together, strong similarities in the microbial communities of the tonsils and saliva are evident in terms of diversity and composition. The saliva microbiome is expected to significantly affect the tonsil microbiome. Furthermore, we suggest that our study creates an opportunity for tonsillar microbiome research to facilitate the development of novel microbiome-based therapeutic strategies.Subject terms: Comparative genomics, Metagenomics  相似文献   
3.
Over the past two decades, advanced materials with hollow interiors have received significant attention in materials research owing to their great application potential across a vast number of technological fields. Though with great difficulty, multi-shelled hollow metal–organic frameworks (MSHMs) have also been successfully synthesized in recent years. Herein, a rational shell-by-shell soft-templating protocol has been devised to fabricate highly uniform multi-shelled hollow cobalt-imidazole-based MOF (ZIF-67). For the first time, it has become possible to endow mesoporosity to this new type of functional material (i.e., mesoporous MOFs). When used as carrier materials in catalytic reactions, in principle, these mesoporous MSHMs with high surface area not only improve the dispersity of metal nanoparticles (NPs), but also efficiently facilitate the mass diffusion of the reactions, resulting in enhanced catalyst activity. Moreover, the obtained MSHMs/M nanocomposites serve as base-metal bifunctional catalysts for one-pot oxidation-Knoevenagel condensation cascade reaction, in which the MSHMs itself serves as a pristine active catalyst in addition to its role of catalyst support. The results demonstrate that excellent multifunctional catalysts can be achieved via preparing intrinsically microporous bulk MOFs into extrinsically mesoporous MSHMs which possess many structural merits that conventional bulk MOFs do not have.  相似文献   
4.
Microtubule dynamics is a target for many chemotherapeutic drugs. In order to understand the biochemical effects of paclitaxel on the GTPase activity of tubulin, the status of guanine nucleotides in microtubules was investigated by 31P cross‐polarization magic angle spinning (CPMAS) NMR. Microtubules were freshly prepared in vitro in the presence of paclitaxel and then lyophilized in sucrose buffer for solid‐state NMR experiments. A 31P CPMAS NMR spectrum with the SNR of 25 was successfully acquired from the lyophilized microtubule sample. The broadness of the 31P spectral lines in the spectrum indicates that the molecular environments around the guanine nucleotides inside tubulin may not be as crystalline as reported by many diffraction studies. Deconvolution of the spectrum into four spectral components was carried out in comparison with the 31P NMR spectra obtained from five control samples. The spectral analysis suggested that about 13% of the nucleotides were present as GTP and 37% as GDP in the β‐tubulin (E‐site) of the microtubules. It was found that most of the GDPs were present as GDP‐Pi complex in the microtubules, which seems to be one of the effects of paclitaxel binding. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
5.
Efficient water electrolysis catalyst is highly demanded for the production of hydrogen as a sustainable energy fuel. It is reported that cobalt derived nanoparticle (CoS2, CoP, CoS|P) decorated reduced graphene oxide (rGO) composite aerogel catalysts for highly active and reliable hydrogen evolution reaction electrocatalysts. 7 nm level cobalt derived nanoparticles are synthesized over graphene aerogel surfaces with excellent surface coverage and maximal expose of active sites. CoS|P/rGO hybrid aerogel composites show an excellent catalytic activity with overpotential of ≈169 mV at a current density of ≈10 mA cm?2. Accordingly, efficient charge transfer is attained with Tafel slope of ≈52 mV dec?1 and a charge transfer resistance (Rct) of ≈12 Ω. This work suggests a viable route toward ultrasmall, uniform nanoparticles decorated graphene surfaces with well‐controlled chemical compositions, which can be generally useful for various applications commonly requiring large exposure of active surface area as well as robust interparticle charger transfer.  相似文献   
6.
Planar luminogens have encountered difficulties in overcoming intrinsic aggregation-caused emission quenching by intermolecular π-π stacking interactions. Although excited-state double-bond reorganization (ESDBR) can guide us on designing planar aggregation-induced emission (AIE) luminogens (AIEgens), its mechanism has yet been elucidated. Major challenges in the field include methods to efficiently restrict ESDBR and enhance AIE performance without using bulky substituents (e.g., tetraphenylethylene and triphenylamine). In this study, we rationally developed fluoro-substituent AIEgens with stronger intermolecular H-bonding interaction for restricted molecular motions and increased crystal density, leading to decreased nonradiative decay rate by one order of magnitude. The adjusted ESDBR properties also show a corresponding response to variation in viscosity. Furthermore, their aggregation-induced reactive oxygen species (ROS) generations have been discovered. The application of such planar AIEgen in treating multidrug-resistant bacteria has been demonstrated in a mouse model. The relationship between ROS generation and distinct E/Z-configurational stacking behaviors have been further understood, providing a design principle for synthesizing planar AIEgen-based photosensitizers.  相似文献   
7.
8.
9.
蔡纯  刘旭  肖金标  丁东  张明德  孙小菡 《光子学报》2006,35(12):1837-1841
采用Agilent 81910A光子全参量测试仪,首次实验研究了InP/In1-xGaxAs1-yPy-MQW(Multiple-Quantum-Well,MQW)材料与衬底间因应力而产生的M-Z型光调制器的PDL影响以及由此引起的由差分群时延(Differential Group Delay,DGD)表征的偏振模色散(Polarization Mode Dispersion,PMD).研究结果表明,半导体MQW光调制器的PDL与DGD是一致的.因此在半导体光器件的制作过程中,应尽可能地减小衬底与波导芯层之间的因残存应力的存在造成对光器件的高速性能的不利影响.  相似文献   
10.
Gauss periods give an exponentiation algorithm that is fast for many finite fields but slow for many other fields. The current paper presents a different method for construction of elements that yield a fast exponentiation algorithm for finite fields where the Gauss period method is slow or does not work. The basic idea is to use elements of low multiplicative order and search for primitive elements that are binomial or trinomial of these elements. Computational experiments indicate that such primitive elements exist, and it is shown that they can be exponentiated fast.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号