首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
化学   1篇
数学   3篇
物理学   7篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2002年   1篇
  1999年   1篇
  1992年   1篇
  1971年   1篇
  1965年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
A two-dimensional steady-sate analysis of semi-infinite brittlecrack growth at a constant subcritical rate in an unboundedfully-coupled thermoelastic solid under mixed-mode thermomechanicalloading is made. The loading consists of normal and shear tractionsand heat fluxes applied as point sources (line loads in theout-of-plane direction). A related problem is solved exactly in an integral transformspace, and robust asymptotic forms used to reduce the originalproblem to a set of integral equations. The equations are partiallycoupled and exhibit operators of both Cauchy and Abel types,yet can be solved analytically. The temperature change field at a distance from the moving crackedge is then constructed, and its dominant term is found tobe controlled by the imposed heat fluxes. The role of this termis, indeed, enhanced if the heat fluxes serve to render thecrack as a net heat source/sink for the solid, as opposed tobeing a transmitter of heat across its plane. More generally,the influence of the thermoelastic coupling on this field, aswell as other functions, is found to increase with crack speed.  相似文献   
2.
Different source-related factors can lead to vocal fold instabilities and bifurcations referred to as voice breaks. Nonlinear coupling in phonation suggests that changes in acoustic loading can also be responsible for this unstable behavior. However, no in vivo visualization of tissue motion during these acoustically induced instabilities has been reported. Simultaneous recordings of laryngeal high-speed videoendoscopy, acoustics, aerodynamics, electroglottography, and neck skin acceleration are obtained from a participant consistently exhibiting voice breaks during pitch glide maneuvers. Results suggest that acoustically induced and source-induced instabilities can be distinguished at the tissue level. Differences in vibratory patterns are described through kymography and phonovibrography; measures of glottal area, open/speed quotient, and amplitude/phase asymmetry; and empirical orthogonal function decomposition. Acoustically induced tissue instabilities appear abruptly and exhibit irregular vocal fold motion after the bifurcation point, whereas source-induced ones show a smoother transition. These observations are also reflected in the acoustic and acceleration signals. Added aperiodicity is observed after the acoustically induced break, and harmonic changes appear prior to the bifurcation for the source-induced break. Both types of breaks appear to be subcritical bifurcations due to the presence of hysteresis and amplitude changes after the frequency jumps. These results are consistent with previous studies and the nonlinear source-filter coupling theory.  相似文献   
3.
Interactions between kinases and small molecule inhibitors can be activation state dependent. A detailed understanding of inhibitor binding therefore requires characterizing interactions across multiple activation states. We have systematically explored the effects of ABL1 activation loop phosphorylation and PDGFR family autoinhibitory juxtamembrane domain docking on inhibitor binding affinity. For a diverse compound set, the affinity patterns correctly classify inhibitors as having type I or type II binding modes, and we show that juxtamembrane domain docking can have dramatic negative effects on inhibitor affinity. The results have allowed us to associate ligand-induced conformational changes observed in cocrystal structures with specific energetic costs. The approach we describe enables investigation of the complex relationship between kinase activation state and compound binding affinity and should facilitate strategic inhibitor design.  相似文献   
4.
We present studies of novel nanocomposites of BiNi impregnated into the structure of opals as well as inverse opals. Atomic force microscopy and high resolution elemental analyses show a highly ordered structure and uniform distribution of the BiNi filler in the matrix. These BiNi-based nanocomposites are found to exhibit distinct ferromagnetic-like ordering with transition temperature of about 675 K. As far as we know there exists no report in literature on any BiNi compound which is magnetic.  相似文献   
5.
A time-domain model of sound wave propagation in the branching airways of the subglottal system is presented. The model is formulated as an extension to an acoustic transmission-line modeling scheme originally developed for simulating the supraglottal system in the time-domain during speech production [Maeda (1982). Speech Commun. 1, 199-229; Mokhtari et al. (2008). Speech Commun. 50, 179-190]. The approach allows for predictions of time-varying acoustic pressure and volume velocity at any point along the various generations of subglottal airways from trachea to alveoli. In addition, the model can be configured so that its overall structure simulates different geometric forms, including airways that branch in a symmetric or asymmetric pattern. Three subglottal configurations, two symmetric and one asymmetric, were represented based on reported anatomical dimensions of the subglottal airways. Estimates of the acoustic input impedances of these subglottal configurations revealed resonant characteristics similar to those found in the previous studies. Simulations of voiced sound propagation into the subglottal airways, achieved by coupling the subglottal model to a two-mass vocal fold model and a supraglottal tract configured for different vowels, yielded predictions of time-domain sound pressure waveforms below the vocal folds that compare favorably to previous measurements in human subjects.  相似文献   
6.
7.
A theoretical flow solution is presented for predicting the pressure distribution along the vocal fold walls arising from asymmetric flow that forms during the closing phases of speech. The resultant wall jet was analyzed using boundary layer methods in a non-inertial reference frame attached to the moving wall. A solution for the near-wall velocity profiles on the flow wall was developed based on a Falkner-Skan similarity solution and it was demonstrated that the pressure distribution along the flow wall is imposed by the velocity in the inviscid core of the wall jet. The method was validated with experimental velocity data from 7.5 times life-size vocal fold models, acquired for varying flow rates and glottal divergence angles. The solution for the asymmetric pressures was incorporated into a widely used two-mass model of vocal fold oscillation with a coupled acoustical model of sound propagation. Asymmetric pressure loading was found to facilitate glottal closure, which yielded only slightly higher values of maximum flow declination rate and radiated sound, and a small decrease in the slope of the spectral tilt. While the impact on symmetrically tensioned vocal folds was small, results indicate the effect becomes more significant for asymmetrically tensioned vocal folds.  相似文献   
8.
Three-way interactions between sound waves in the subglottal and supraglottal tracts, the vibrations of the vocal folds, and laryngeal flow were investigated. Sound wave propagation was modeled using a wave reflection analog method. An effective single-degree-of-freedom model was designed to model vocal-fold vibrations. The effects of orifice geometry changes on the flow were considered by enforcing a time-varying discharge coefficient within a Bernoulli flow model. The resulting single-degree-of-freedom model allowed for energy transfer from flow to structural vibrations, an essential feature usually incorporated through the use of higher order models. The relative importance of acoustic loading and the time-varying flow resistance for fluid-structure energy transfer was established for various configurations. The results showed that acoustic loading contributed more significantly to the net energy transfer than the time-varying flow resistance, especially for less inertive supraglottal loads. The contribution of supraglottal loading was found to be more significant than that of subglottal loading. Subglottal loading was found to reduce the net energy transfer to the vocal-fold oscillation during phonation, balancing the effects of the supraglottal load.  相似文献   
9.
10.

Background  

Although a large body of knowledge about both brain structure and function has been gathered over the last decades, we still have a poor understanding of their exact relationship. Graph theory provides a method to study the relation between network structure and function, and its application to neuroscientific data is an emerging research field. We investigated topological changes in large-scale functional brain networks in patients with Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD) by means of graph theoretical analysis of resting-state EEG recordings. EEGs of 20 patients with mild to moderate AD, 15 FTLD patients, and 23 non-demented individuals were recorded in an eyes-closed resting-state. The synchronization likelihood (SL), a measure of functional connectivity, was calculated for each sensor pair in 0.5–4 Hz, 4–8 Hz, 8–10 Hz, 10–13 Hz, 13–30 Hz and 30–45 Hz frequency bands. The resulting connectivity matrices were converted to unweighted graphs, whose structure was characterized with several measures: mean clustering coefficient (local connectivity), characteristic path length (global connectivity) and degree correlation (network 'assortativity'). All results were normalized for network size and compared with random control networks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号