首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   0篇
化学   48篇
晶体学   1篇
力学   8篇
数学   2篇
物理学   48篇
  2016年   1篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   6篇
  2005年   5篇
  2004年   1篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   6篇
  1993年   5篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1986年   1篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   3篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1969年   2篇
  1968年   2篇
  1967年   1篇
  1966年   3篇
  1947年   5篇
  1943年   2篇
  1928年   2篇
排序方式: 共有107条查询结果,搜索用时 23 毫秒
1.
In utilizing the advantages of extinction measurements in micron and especially submicron particle characterization, the properties of a multiple wavelength extinction technique have been the subject of extended theoretical studies. Furthermore, an experimental set-up was designed which provides high flexibility owing to its modular design. The performance of the technique described is demonstrated by a large variety of applications in aerosol and combustion research and in large-scale industrial systems. It was found to be a reliable tool in characterizing dense particulate systems.  相似文献   
2.
3.
4.
5.
6.
We report the detection of nascent PO produced via the collision-free IR photolysis of dimethyl methylphosphonate. Absorption throughout the B2Σ+ ← X2Π system is followed by excitation using 266 nm radiation, which results in PO+ + e. Spectral features due to spin-orbit excitation appear extremely “cold” relative to vibrations and rotations.  相似文献   
7.
The photodissociation of H(2)Te through excitation in the first absorption band is investigated by means of multireference spin-orbit configuration interaction (CI) calculations. Bending potentials for low-lying electronic states of H(2)Te are obtained in C(2v) symmetry for Te-H distances fixed at the ground state equilibrium value of 3.14a(0), as well as for the minimum energy path constrained to R(1)=R(2). Asymmetric cuts of potential energy surfaces for excited states (at R(1)=3.14a(0) and theta;=90.3 degrees ) are obtained for the first time. It is shown that vibrational structure in the 380-400 nm region of the long wavelength absorption tail is due to transitions to 3A('), which has a shallow minimum at large HTe-H separations. Transitions to this state are polarized in the molecular plane, and this state converges to the excited TeH((2)Pi(1/2))+H((2)S) limit. These theoretical data are in accord with the selectivity toward TeH((2)Pi(1/2)) relative to TeH((2)Pi(3/2)) that has been found experimentally for 355 nm H(2)Te photodissociation. The calculated 3A(')<--XA(') transition dipole moment increases rapidly with HTe-H distance; this explains the observation of 3A(') vibrational structure for low vibrational levels, despite unfavorable Franck-Condon factors. According to the calculated vertical energies and transition moment data, the maximum in the first absorption band at approximately 245 nm is caused by excitation to 4A("), which has predominantly 2(1)A(") ((1)B(1) in C(2v) symmetry) character.  相似文献   
8.
The room-temperature ultraviolet absorption spectrum of H2Te has been recorded. Unlike other group-6 hydrides, it displays a long-wavelength tail that extends to 400 nm. Dissociation dynamics have been examined at photolysis wavelengths of 266 nm (which lies in the main absorption feature) and 355 nm (which lies in the long-wavelength tail) by using high-n Rydberg time-of-flight spectroscopy to obtain center-of-mass translational energy distributions for the channels that yield H atoms. Photodissociation at 355 nm yields TeH(2Pi1/2) selectively relative to the TeH(2Pi3/2) ground state. This is attributed to the role of the 3A' state, which has a shallow well at large R(H-TeH) and correlates to H+TeH(2Pi1/2). Note that the 2Pi1/2 state is analogous to the 2P1/2 spin-orbit excited state of atomic iodine, which is isoelectronic with TeH. The 3A' state is crossed at large R only by 2A", with which it does not interact. The character of 3A' at large R is influenced by a strong spin-orbit interaction in the TeH product. Namely, 2Pi1/2 has a higher degree of spherical symmetry than does 2Pi3/2 (recall that I(2P1/2) is spherically symmetric), and consequently 2Pi1/2 is not inclined to form either strongly bonding or antibonding orbitals with the H atom. The 3A'<--X transition dipole moment dominates in the long-wavelength region and increases with R. Structure observed in the absorption spectrum in the 380-400 nm region is attributed to vibrations on 3A'. The main absorption feature that is peaked at approximately 240 nm might arise from several excited surfaces. On the basis of the high degree of laboratory system spatial anisotropy of the fragments from 266 nm photolysis, as well as high-level theoretical studies, the main contribution is believed to be due to the 4A" surface. The 4A"<--X transition dipole moment dominates in the Franck-Condon region, and its polarization is in accord with the experimental observations. An extensive secondary photolysis (i.e., of nascent TeH) is observed at 266 and 355 nm, and the corresponding spectral features are assigned. Analyses of the c.m. translational energy distributions yield bond dissociation energies D0. For H2Te and TeH, these are 65.0+/-0.1 and 63.8+/-0.4 kcalmol, respectively, in good agreement with predictions that use high-level relativistic theory.  相似文献   
9.
The 300 K reactions of O2 with C2(X 1Σ+g), C2(a 3 Πu), C3(X? 1Σ+g) and CN(X 2Σ+), which are generated via IR multiple photon dissociation (MPD), are reported. From the spectrally resolved chemiluminescence produced via the IR MPD of C2H3CN in the presence of O2, CO molecules in the a 3Σ+, d 3Δi, and e 3Σ? states were identified, as well as CH(A 2Δ) and CN(B 2Σ+) radicals. Observation of time resolved chemiluminescence reveals that the electronically excited CO molecules are formed via the single-step reactions C2(X 1Σ+g, a 3Πu) + O2 → CO(X 1Σ+ + CO(T), where T denotes are electronically excited triplet state of CO. The rate coefficients for the removal of C2(X 1Σ+g) and C2(a 3Πu) by O2 were determined both from laser induced fluorescence of C2(X 1Σ+g) and C2(a 3Πu), and from the time resolved chemiluminescence from excited CO molecules, and are both (3.0 ± 0.2)10?12 cm3 molec?1 s?1. The rate coefficient of the reaction of C3 with O2, which was determined using the IR MPD of allene as the source of C3 molecules, is <2 × 10?14 cm3 molec?1 s?1. In addition, we find that rate coefficients for C3 reactions with N2, NO, CH4, and C3H6 are all < × 10?14 cm3 molec?1 s?1. Excited CH molecules are produced in a reaction which proceeds with a rate coefficient of (2.6 ± 0.2)10?11 cm3 molec?1 s?1. Possible reactions which may be the source of these radicals are discussed. The reaction of CN with O2 produces NCO in vibrationally excited states. Radiative lifetime of the ā 2Σ state of NCo and the ā 1Πu(000) state of C3 are reported.  相似文献   
10.
The experimental technique presented is designed to obtain detailed local heat transfer data on both stationary as well as rotating disc-cavity surfaces applicable to gas turbines. The method employed utilizes thin coatings of thermochromic liquid crystals (TLC) as surface temperature indicators under aerodynamically steady but thermally transient experimental conditions. The color display of the liquid crystals is monitored by a video camera. The video signals are captured in real time by a computer-based color recognition system to extract areal temperature and heat transfer information. Some typical results are presented and compared with-literature data to illustrate the potential of the system.

List of symbols

Symbols Unit Physical property a m2/s thermal diffusivity - B - blue color signal - G - green color signal - G - rotor/stator spacing ratio z/r o - Nu ro - Nusselt number r o/ - r m radial location - r o m disc radius - R - red color signal - Re m - mass flow Reynolds number V/2zv - Re ro - rotational Reynolds number r o 2/v - t s time - T o K initial temperature - T ref K convecting fluid temperature - T s K disc surface temperature - U - color difference signal - V - color difference signal - Y - luminance signal - z m rotor/stator spacing - - spectral weight factor - W/m2 K local heat transfer coefficient - 1/K volumetric expansion coefficient - - spectral weight factor - - scaling factor - ij - Kronecker-Delta - - scaling factor - - spectral weight factor - W/m K thermal conductivity - v m2/s fluid kinematic viscosity - kg/m3 fluid density  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号